- строительство офисных и многофункциональных зданий с повышенным комфортом, где применение одновременного кондиционирования и нагрева воды для ГВС является экономически целесообразным.
 - 3. Положительный экологический эффект.

Литература

- 1. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии,1989.
- 2. Дячек, П. И. Кондиционирование воздуха и холодоснабжение / П. И. Дячек. М: ACB, 2017.
- 3. Кокорин, О. Я. Установки кондиционирования воздуха / О. Я. Кокорин. М: Машиностроение, 1978.

УДК 620.97

Мониторинг эффективности систем рекуперация от холодильного оборудования.

Сермяжко В. Л., Станецкая Ю. А. Белорусский национальный технический университет Минск, Республика Беларусь

В статье рассмотрены методы оценки эффективности принятых технических решений по рекуперации теплоты с помощью цифрового мониторинга и системного анализа исторических данных, накопленных в ходе процесса эксплуатации.

В соответствии с определением в Законе Республики Беларусь от 8 января 2015 г. № 239-3 «Об энергосбережении», энергетическая эффективность (энергоэффективность) — характеристика, отражающая отношение полученного эффекта от использования топливно-энергетических ресурсов к затратам топливно-энергетических ресурсов (ТЭР), произведенным в целях получения такого эффекта [1].

Эффективное и рациональное использование ТЭР является стратегической задачей для достижения целей «устойчивого развития» (задача 12.6) [2]. Область знаний об энергетической эффективности находится на стыке физико-математических, технических и экономических наук.

Использование энергосберегающих решений и оборудования на этапе проектирования должно подтверждаться технико-экономическим обоснованием инвестиций в комплекс мероприятий по энергосбережению. ТЭО должно включать качественный и количественный расчет капитальных за-

трат, эксплуатационных расходов на обслуживание системы за весь срок эксплуатации, потенциальные выгоды и экономию от внедренной технологии в виде сэкономленных средств на ТЭР и снижения затрат.

Исследования по рекуперации низкотемпературной теплоты от холодильного оборудования проводятся на протяжении последних 40 лет. Большинство работ описывают проектирование, предварительный экономический анализ и способы внедрения систем рекуперации.

В этой статье рассматривается инструмент качественной и количественной оценки эффективности от внедренной системы. Мониторинг здесь является широким понятием, не является закрытой концепцией и зависит от конфигурации системы рекуперации в каждом конкретном случае. Как правило, у систем мониторинга есть ряд общих характеристик: наблюдение и анализ в режиме реального времени, система оповещения об авариях, графическая визуализация, отчеты, история, прогнозирование, уровни пользователей.

В качестве примера цифрового мониторинга предлагается рассмотреть решение «GreenHVAC» разработанное компанией «Экоинжинирингстрой», включающее в себя базу для накопления исторических данных, панель для отображения текущего состояния системы, графики изменения температуры, расхода тепловой, электрической энергии, расхода воды на ГВС в течении дня, месяца, года. Вход в онлайн режиме доступен по ссылке: energy.greenhvac.tech. Логин для входа: demo. Пароль: f#h8YHWVQu.

На объекте мониторинга отображена принципиальная схема полной рекуперации теплоты от парокомпрессионной холодильной машины с двумя последовательно установленными кожухотрубными теплообменными аппаратами (пароохладитель в качестве первой ступени и конденсатор) (рис. 1).

Для накопления энергии применяется три накопительные емкости общим объемом $2,5~{\rm M}^3$ подключенные последовательно по ходу движения холодной воды. На ней же отмечены расположение датчиков температуры первичных преобразователей расхода.

Мониторинг эффективности, включает в себя:

- наблюдение за изменением температуры воды, подаваемой в систему ГВС (датчик ТЕЗ) в зависимости от времени суток и режима работы холодильной машины;
- анализ распределения тепловой энергии, накапливаемой в тепло- аккумуляторах в утренние и вечерние пики, в дневные и ночные провалы, путем сравнения значений температуры по датчикам, расположенным в нижней, средней и верхней части накопительных емкостей (датчик TE4, TE5, TE6, TE7);

- контроль режима работы холодильной машины посредством датчиков температуры TE8, TE9, TE10;
- контроль потребления электрической энергии, расходуемой на работу холодильной машины и тепловой энергии отдаваемой из системы рекуперации в систему ГВС здания, в том числе с пересчетом в денежный эквивалент по действующему тарифу;
- прогноз потребления тепловой энергии из тепловой сети необходимой для нагрева воды на нужды ГВС через пластинчатый теплообменник (п. 10), используемый в качестве второй ступени.

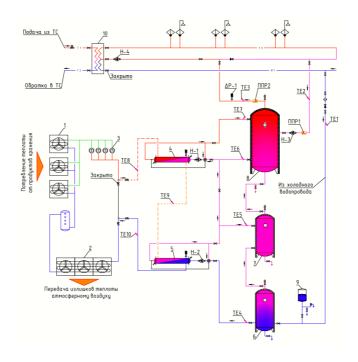


Рис. 1. Принципиальная схема полной рекуперации теплоты от парокомпрессионной холодильной машины:

1 – испаритель; 2 – воздушный конденсатор; 3 – компрессор; 4 – кожухотрубный пароохладитель; 5 – кожухотрубный конденсатор; 6 – накопительная емкость (теплоаккумулятор); 9 – расширительный бак; 10 – пластинчатый теплообменник

На рис. 2 приведен график изменения показаний, зафиксированных с температурных датчиков в течении суток.

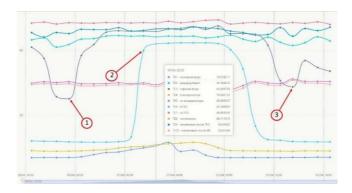


Рис. 2. График изменения температуры теплоносителя в течении суток

На данном графике видно, как в промежутке между 18 и 20 часами температура воды, подаваемой в систему ГВС (датчик ТЕЗ, обозначен как процесс 1) опускается ниже 28 °C. Далее температура ГВС увеличивается до значения 45 °C, промежуток с 20 часов до 12 часов следующего дня. Одновременно мы можем наблюдать, как в ночное время происходит повышение температуры в средней части накопительной емкости, в промежутке с 2-х часов ночи до 8 утра, до температуры выше чем 42°C, что свидетельствует о том, что в данной системе объема теплоаккумулятора не достаточно для накопления всей тепловой энергии, поступающей в пароохладитель и отводимой теплоносителю за счет охлаждения паров до температуры конденсации (датчик ТЕ6, обозначен как процесс 2). Далее в дневное время, в промежутке с 12 до 2 часов дня видно, как снова происходит уменьшение температуры воды, подаваемой в систему ГВС ниже 30 °C (датчик ТЕ3, обозначен как процесс 3).

Полученные данные с датчиков температуры сопоставляются с данными об объемном расходе холодной воды и тепловой энергией, расходуемой на ее нагрев для нужд ΓBC в часы максимального и минимального водопотребления.

На рис. 3 приведена столбчатая диаграмма, на которой видно, что расход холодной воды для системы ГВС в течение суток неравномерный.

В ночное время потребление уменьшается, а в утреннее и вечернее время резко увеличивается. Почасовой объемный расход холодной воды $V_{\text{хв.}}$ (м³) фиксируется с помощью первичных преобразователей расхода теплового счетчика и вычисляется по следующей формуле

$$V_{yp} = \Pi \Pi P2 - \Pi \Pi P1$$
,

где ППР2 – расход через первичный преобразователь расхода горячей воды после системы рекуперации; ППР1 – расход через первичный преобразователь расхода циркуляционной линии системы ГВС.

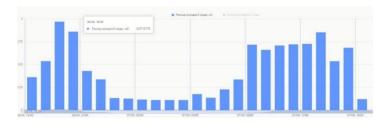


Рис. 3. Диаграмма расхода холодной воды в течении суток

На рис. 4 приведена столбчатая диаграмма расхода тепловой энергии по часам в течение суток, расходуемой на нагрев холодной воды и циркуляционного трубопровода.

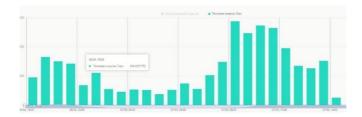


Рис. 4. Диаграмма расхода тепловой энергии полученной от системы рекуперации теплоты в течении суток

Показания снимаются с теплового счетчика ТЭМ-104М и фиксируются в базе данных. Тепловой счетчик работает по схеме учета «ГВС + циркуляция» с соответствующей формулой расчета энергии. Значение часового расхода тепловой энергии вычисляется путем вычитания показаний накопленной энергии в начале предыдущего часа из показаний в начале каждого нового часа.

Анализируя данные расхода холодной воды, тепловой энергии на ее нагрев и потребление электрической энергии холодильной машиной приходим к выводу, что значение расхода воды и тепловой энергии сопоставимы в начале дня, так как в ночное время произошло ее накопление в теплоаккумуляторе. Но анализируя значения потребления электрической энергии холодильной машины и расходуемой тепловой энергии на нагрев воды для

нужд ГВС в течении дня, становится понятным, что накопление тепловой энергии происходит не эффективно, о чем свидетельствуют перегрев теплоаккумуляторов в ночное время и уменьшение температуры горячей воды в часы максимального водопотребления.

На рис. 5 видно, что количество затраченной электрической энергии в ночное время перекрывает значение потребленной теплоты системой ГВС. В часы максимального водопотребления наоборот, количество теплоты необходимой для нагрева воды в разы больше, чем количество потребленной электрической энергии, умноженное на коэффициент теплопроизводительности в режиме теплового насоса. Что свидетельствует о превышении потребности в теплоте для ГВС над производительностью системы в данный момент.

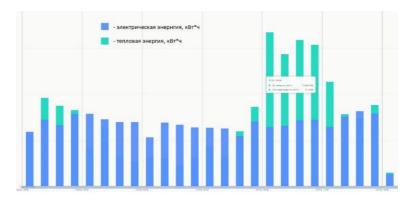


Рис. 5. Диаграмма потребления электрической энергии холодильной машиной и тепловой энергии полученной от системы рекуперации для нужд ГВС в течение суток

Анализируя график изменения температуры в разных частях теплоаккумуляторов, делаем вывод, что потенциал системы рекуперации теплоты от холодильного оборудования на данном объекте используется не в полном объеме. На данном объекте это было обусловлено техническими ограничениями в наличии места для установки дополнительных накопительных емкостей.

На рис. 6 наглядно показан потенциал тепловой энергии, которая могла бы накапливаться в теплоаккумуляторах для дальнейшего использования на нужды ГВС в часы максимального водопотребления.

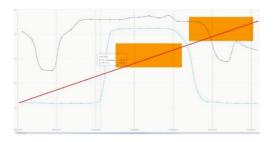


Рис. 6. График изменения температуры теплоносителя в течение суток

Важно отметить, что на момент написания данной статьи Законодательством Республики Беларусь не предусмотрен коммерческий учет тепловой энергии, полученной путем рекуперации теплоты от холодильного оборудования.

Выводы

- 1. Мониторинг эффективности систем рекуперация от холодильного оборудования является математической моделью обосновывающей инвестиции в энергосберегающие технологии, поэтому требует законотворческой инициативы для коммерческого учета тепловой энергии полученной из вторичных энергетических ресурсов.
- 2. Критерии оценки эффективности требуют единой стандартизации и являются первым шагом в переходе к построению децентрализованных систем теплоснабжения, источником теплоты в которых являются системы рекуперации от холодильного оборудования и тепловые насосы.
- 3. Применение автоматизации систем отопления, вентиляции и кондиционирования воздуха с функцией цифрового мониторинга и элементами искусственного интеллекта позволяют контролировать работу системы в целом, накапливать архив данных, с помощью которого можно проводить текущий анализ эффективности работы. А также составлять прогнозы, моделировать мероприятия по улучшению эксплуатации системы, замены запасных частей, окончания срока службы оборудования, срока окупаемости систем рекуперации, прогнозировать прибыль от внедрения энергосберегающих технологий.

Литература

1. Закон Республики Беларусь «Об энергосбережении» от 8 января 2015 г. № 239-3 [Электронный ресурс] // Эталон-Беларусь / Нац. центр правовой информ. Респ. Беларусь. – Минск, 2020.

2. Technical report by the Bureau of the United Nations Statistical Commission (UNSC) on the process of the development of an indicator framework for the goals and targets of the post-2015 development agenda. – https://sdgs.un.org/goals.

УДК 697.1

Особенности расчета теплопотерь зданий в программе Autodesk Revit

Борухова Л. В., Летун Е. А., Сокол Д. Ю. Белорусский национальный технический университет Минск, Республика Беларусь

Проведено исследование возможностей технологий BEM и BPS в расчетах теплопотерь. Приведены сравнительные результаты расчетов теплопотерь с помощью Autodesk Revit и нормативной методики

Расчет теплопотерь является важным этапом в проектировании зданий, так как он позволяет принять оптимальные технические решения, связанные с системами отопления, вентиляции и кондиционирования воздуха. Важно отметить, что расчет теплопотерь необходим не только на этапе проектирования, но и при проведении реконструкции и модернизации зданий.

Расчет теплопотерь здания является трудоемким процессом, который требует точного учета таких факторов, как геометрические и теплотехнические характеристики каждой ограждающей конструкций здания.

Выполнение расчета теплопотерь без использования специальных программных инструментов может занять значительное количество времени, а полученные результаты могут быть неточными и не соответствовать действительности в следствии различных ошибок.

Для решения этих проблем возможно использование технологии информационного моделирования зданий (Building Information Modelling – BIM), моделирования энергопотребления зданий (Building Energy Modelling – BEM) и симуляции энергопотребления зданий (Building Performance Simulatio – BPS), которые позволяют выполнить расчет теплопотерь более точно и эффективно.

BIM – процесс создания цифровой модели здания, которая содержит всю необходимую информацию об объекте, включая геометрию, материалы, конструкцию, функциональные характеристики, а также информацию об энергетической производительности и управлении зданием.

ВЕМ – процесс создания математической модели здания с использованием специальных программных инструментов. ВЕМ позволяет анализировать и оп-