Таблица 1. Усилия штамповки при чистовой вырубке

Толщина, мм	0,5			1			2			3		
Материал	Усилие, тс											
	P ₁	Р2	P	P ₁	P ₂	P	P ₁	P ₂	P	P ₁	P ₂	P
Л62М	2,2	0,16	3,9	4,2	0,33	3 7,8	8,5	0,7	15,8	1 3,0	1,0	23,5
08кп	2,6	0,2	4,8	5,2		10,0	11,0	0,9	20,0	15,0	1,2	30,0
20	3,4	0,3	6,0	8,0	0,7	12,6	13,0	1,3	23,0	15,0	1,5	32,0
У8	7,5	0,8	13,3	15,0	1,5	28,0		_	_	-	_	-

^{*}Изделия были получены со сколом на поверхности среза. Дальнейшее увеличение усилия прижима в сравнении с приведенными в табл. 1 не приводили к улучшению кв чества изделий.

ределенной его величине вся поверхность среза получается блестящей. При этом хорошие результаты получены с материалами Л62М и О8кп, несколько хуже, но удовлетворительно штампуется сталь 20. При штамповке стали У8 получаются большие усилия прижима, что должно сказаться на стойкости инструмента, к тому же получить боковую поверхность без скола не удалось.

В табл 1 приведены значения усилий прижима P_1 , усилий противодавления P_2 и полного усилия штамповки P_3 , при которых были получены поверхности среза без сколов, расположенные перпендикулярно плоскости детали.

УДК 621.771

А.В.СТЕПАНЕНКО, М.В.ЛОГАЧЕВ. В.А.ЧАЙКА

ИССЛЕДОВАНИЕ ВЛИЯНИЯ УЛЬТРАЗВУКА НА ПРОЦЕСС АДГЕЗИИ ПРИ ПРЕССОВАНИИ СТЕКЛА

Известно, что во вращающейся форме прилипание стекла значительно меньше, чем у неподвижной. Замечено также, что механические колебания способствуют лучшему формованию стеклянных изделий без прилипания [1, 2]. Сведения об использовании ультразвуковых колебаний в процессе прессования стекла практически отсутствуют.

В работе рассматривалось влияние ультразвуковых колебаний на процесс адгезии при прессовании стекла. Исследования проводились на опытной установке [3], у которой стержни-пуансоны изготовлены резонансной длины, равной $\lambda/2$, где λ — длина ультразвуковой волны. Ультразвуковые колебания возбуждались с помощью стандартных магнитострикционных преобразователей ПМС 15A-18, прикрепленных к одному из торцов стержня пуансона. Питание преобразователей осуществлялось от ультразвукового генератора УЗГ-10-22 с акустической обратной связью. Принципиальная схема установки для прессования стекла с ультразвуком представлена на рис. 1.

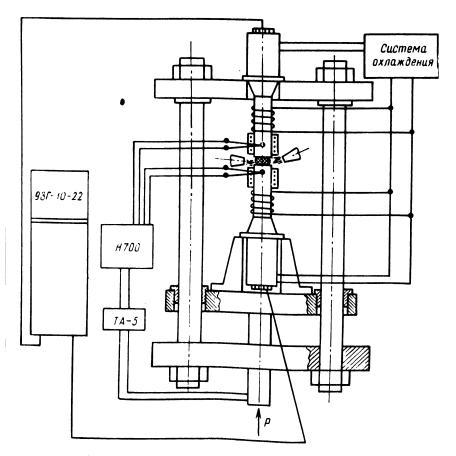


Рис. 1. Принципиальная схема установки для прессования стекла с ультразвуком.

Исследование влияния ультразвука на процесс адгезии при прессовании стекла производилось в следующей последовательности. Рабочие торцы волноводов-пуансонов предварительно разогревались электрическим обогревателем до температуры $550-600^{\rm O}$ C. Затем из печи нагрева в зону прессования подавалась стеклянная заготовка, нагретая до температуры $600^{\rm O}$ C, которая с помощью двух горелок окончательно нагревалась до температуры пласти ческого состояния — $780-800^{\rm O}$ C. В этот период стеклянная заготовка удерживалась на весу между волноводами-пуансонами. После нагрева включались ультразвуковые колебания и нижний волновод-пуансон поднимался вверх, одновременно деформируя стекло.

Исследования проводились со следующими параметрами процесса: ам плитуда колебаний составляла 6 мк, напряжение выхода генератора — 400 В, ток анода — 1,2 А, ток сетки — 350 мА, время включения ультразука 0,5 20 с, время прессования 5—10 с. Адгезия изучалась на следующей контакти рующей паре: стекло БФ16 — сталь X18H10T. Степень адгезии оценивалась по площади прилипания стекла к рабочей части волновода-пуансона.

В процессе прессования стекла включение ультразрука производили в одной серии экспериментов на протяжении всего процесса и выключали после снятия давления, в другой — в начальный момент прессования и в ко нечный, что способствовало отделению отпрессованных изделий от инструмента, и в третьей — в середине процесса, когда усилие прессования достигаломаксимального значения.

На основании полученных данных следует, что в диапазоне температур 580—600°С при включении ультразвука в процессе прессования прилипа ния стекла к инструменту не наблюдалось, в то время как при прессовании стекла без наложения ультразвуковых колебаний при этих температурах пло щадь прилипания составляла почти 50% площади контакта. Причем ультра звук следует подавать в зону деформации на протяжении всего процесса прессования вплоть до удаления готового изделия из пресс-формы, что обес печивает лучшее качество поверхности по сравнению с другими схемами по дачи ультразвука.

ЈІИТЕРАТУРА

1. Патент Австралии № 150169. 2. Патенты Франции № 1558567 и № 1477516, кл. СОЗв. 3. Степаненко А.В., Чайка В.А., Логаче и М.В. Влияние температуры на прилипание стекла к металлу пресс-формы и процессе его прессования. — В сб.: Металлургия. Минск, 1979, вып. 13.