Ю.П.Ощепков, Н.В.Ощепкова, Л.В.Лобкис

ПРОЧНОСТЬ СЦЕПЛЕНИЯ ПОКРЫТИЙ ИЗ САМОФЛЮСУЮЩИХСЯ ТВЕРЛЫХ СПЛАВОВ

При разработке технологии наплавки твердых самофлюсующихся сплавов важно обеспечить высокую прочность зоны сплавления, так как она во многом определяет работоспособность деталей. Установлено, что в зависимости от способа и режима нанесения покрытия прочность сцепления самофлюсующихся сплавов с основным металлом может изменяться от 11 до 40 кгс/мм² [1].

В данной работе определялась прочность сцепления $\mathcal{G}_{\text{сц}}$ в зоне сплавления, полученной при печной наплавке сплава ПГ-СР4 (ГОСТ 21448—75) на малоуглеродистую сталь 20. Исследование проводилось на основе методики определения $\mathcal{G}_{\text{сц}}$ путем выдавливания штифта [2]. Изучено влияние температуры (T = 1000—1250°C), времени выдержки (τ до 600 с) и скорости нагрева (v= 3— 20 град/с) при толщине покрытия 3 мм. Прочность сцепления определяли как отношение разрушающего усилия к площади отрыва, измеренной на инструментальном микроскопе МБИ—1.

Результаты опытов показывают, что, изменяя режим наплавки, можно повысить прочность сцепления в зоне сплавления (рис. 1). При относительно низких температурах наплавки $(1020^{\rm O}{\rm C})$ и малых выдержках $(1-2~{\rm мин})$ прочность сцепления не превыщает $15\pm2~{\rm кгc/mm^2}$. Разрушение при этом происходит по шлаковым включениям, либо микропорам.

Увеличение температуры приводит к росту прочности сцепления. Максимальное значение \mathcal{C}_{CL} 48 ± 4 кгс/мм² имели образцы, наплавленные при 1150^{O}C за время 5 мин. В мелкозернистом изломе просматриваются мелкие (~ 1 мкм) лепесткообразные фасетки, на фоне которых заметны отдельные ровные площадки правильной многоугольной формы — кристаллы избыточной фазы. Трещины в этом случае развиваются только в наплавленном металле, предпочтительно по границе между эвтектической и заэвтектической зонами.

При перегревах в режиме 1200° С, 5-10 мин прочность сцепления снижается и составляет 32 ± 2 кгс/мм². Это можно объяснить изменением химического состава зоны сплавления за счет встречной диффузии. Траектория излома при этом контролируется прослойкой γ -фазы и трещины распространяются, как правило, по этим прослойкам. Уменьшение содержания карбоборидной фазы в зоне сплавления способствует пластической деформации микрообъемов перед разрушением. Об этом свидетельствует изменение внешнего вида фасеток скола прослойки γ -раствора и появление гладких поверхностей разрушения. Необходимо отметить, что ни в одном

случае не наблюдалось разрушение по основанию дендритов, характерное для аналогичного испытания наплавленного сормайта. Лишь на нескольких образцах разрушение произошло по диффузионной зоне, примыкающей к линии сплавления со стороны основного металла.

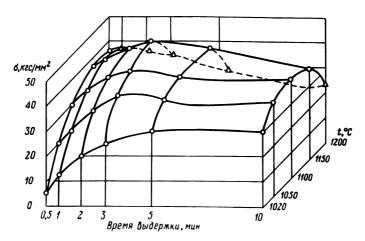


Рис. 1. Зависимость прочности сцепления (**б**) твердосплавного покрытия со сталью 20 от температурно-временных параметров наплавки.

Изучение влияния времени (t) нагрева на величину б сц показало, что наибольшие изменения прочность сцепления претерпевает при малых выдержках (до 3 мин) от начала нагрева, в интервале 3—5 мин она достигает своего наибольшего значения для данной температуры, затем незначительно снижается и при более длительном нагреве остается постоянной. Увеличение скорости нагрева приводит к снижению прочности сцепления покрытия с подложкой.

Литература

1. Дорожкин Н.Н. Упрочнение и восстановление деталей машин металлическими порошками. — Минск, 1975. 2. Ткачев В.Н. Индукционная наплавка твердых сплавов. — М., 1970.