II. ЛИТЕЙНОЕ ПРОИЗВОДСТВО

УДК 621.744.079

А.В.Нечаев, инженер, А.М.Милов, ст. науч. сотр., Ю.К.Калинин, канд. техн. наук (БПИ)

ШУНГИТЫ КАРЕЛИИ И ИХ ИСПОЛЬЗОВАНИЕ В СОСТАВЕ ПРОТИВОПРИГАРНЫХ ПОКРЫТИЙ

На кафедре "Материаловедение и литейное производство" Белорусского политехнического института на протяжении последних лет совместно с Институтом геологии КФ АН СССР проводятся исследовательские работы с целью разработки противопригарных покрытий для чугунного литья на основе шунгитовых пород.

Шунгиты представляют собой самые древние осадочные породы, встречающиеся только на территории Советской Карелии, и содержат от десятых долей до 99% шунгитового углерода. Соответственно изменяется и содержание в породах минерального субстрата. Практический интерес среди них представляют породы с силикатной минеральной основой, преобладающие по объему. Составляющими этих пород являются четыре основные компонента: шунгитовый углерод, квари, алюмосиликаты (слюды и плагиоклазы) и хлориты, которые могут иметь различный гранулометрический состав.

По содержанию углерода породы подразделяются на высоко-(содержание углерода более 20%), средне- (С от 20 до 5%) и малоуглеродистые (С менее 5%).

Из числа высокоуглеродистых пород наиболее перспективными для промышленного использования являются породы группы III-X-K, слагающие крупные месторождения, находящиеся в благоприятных горноэксплуатационных условиях. Разведанные запасы этих пород составляют около 80 млн. т, а прогнозные около 120.

Ввиду наибольшей перспективности исследования проводились на породах марки III-X-К Максово-Зажогинского месторождения. Средний химический состав пород этого месторождения в районе опытного карьера, заложенного Институтом геологии, следующий:

SiO ₂	TiO ₂	^{Al} 2 ^O 3	Fe0 + +Fe ₂ 0 ₃	CaO	Mg0	Na ₂ 0	к ₂ 0	п. п. п.	С
57,9	0,25	4,31	2,07	0,10	0,72	0,11	1,40	32,00	30,68

Минеральный состав силикатной части этих пород на 65-75% состоит из кварца, мелкочешуйчатого серицита (15-20%), крип-топластического хлорита (10-15%). Наиболее вероятный размер частиц силикатных минералов 1-10 мкм.

Шунгитовые породы Максово-Зажогинского месторождения имеют плотность 2,35-2,40 г/см³, предел прочности на сжатие -80,0-100,0 МПа, твердость по Моосу -4,0-4,5.

Возможности высокоэффективного использования шунгитовых пород в составах противопригарных покрытий обусловлены рядом их структурных и физических признаков, по которым они выделяются в ряду углеродистых пород. Факторами, придающими шунгитовым породам эту специфичность, являются структура и свойства шунгитового углерода, высокая дисперсность силикатных частиц, особенности их взаимного расположения в объеме породы, высокая прочность контакта силикатных частиц и углерода.

В ходе исследовательских работ были разработаны два со-става покрытий на основе шунгита (табл. 1).

Партия приведенных покрытий была изготовлена централизованно в виде паст в условиях Миллеровского карьероуправления ВПО "Союзформоматериалы".

Свойства покрытий были испытаны в лаборатории Цеха специальных формовочных материалов карьероуправления и представлены в табл. 2.

Изготовленные пасты ШБ-1 и ШБ-2 были распределены по трем заводам (Минский завод автоматических линий, Минское

Таблица 1

I A O N N H A I							
Составляющие	Количество компонентов, %						
Составляющие	ШБ-1	ШБ-2					
Шунгит марки III-X-К Сланец-кукерсит Бентонит Сульфитно-дрожжевая бражка Вода	80,5-92,5 - 3,5-4,5 6-8 Остальное, сво	75-84 4-13 3-6 6-8 epx 100%					

Свойство	Количество			
CBUNCIBU	ШБ-1	ШБ-2		
Внешний вид	Пастообразная масса черного цвета			
Содержание влаги, %	27	27		
Вязкость краски при плотности $y = 1,35 \text{ г/см}^3$, с	13	15		
Седиментационная устойчивость, %	98-99	99-100		
Стойкость красочного слоя к исти-ранию, МПа	Более 0,2 Более 0,2			
Внешний вид нанесенного, высушен-	Ровный слой без тре- щин и включений			

станкостроительное производственное объединение и Каунасский завод "Центролит"), где были проведены их промышленные испытания при изготовлении чугунного станочного литья развесом от 30 до 13000 кг с толщиной стенок от 20 до 200 мм.

Все отливки, произведенные с применением разработанных покрытий по чистоте поверхности, соответствовали техническим условиям и по качеству практически не отличались от отливок, изготовленных с применением краски на основе графита (ГП-1). После механической обработки не было обнаружено поверхностных и внутренних дефектов, связанных с качеством противопригарных покрытий.

В ходе испытаний была отмечена высокая седиментационная устойчивость покрытий, их хорошая кроющая способность при различных способах нанесения на поверхность форм и стержней.

Кроме того, в условиях Каунасского завода "Центролит" приготавливались самовысыхающие покрытия, включающие в своем составе, кроме шунгита, нитроэмаль и ацетон. С применением данной краски было изготовлено 55 т станочного литья, а за весь период испытаний — около 1700 т годного литья.

Проведенные исследования показали, что шунгит марки III-X-К является достойным заменителем графита в составах противопригарных покрытий для чугунного литья.