Анализируя влияние добавок на электронный спектр или физические характеристики растворителя, можно осуществлять целенаправленный подбор модифицирующих добавок.

ЛИТЕРАТУРА

1. Сам сонов Г.В., Прядко И.Ф., Прядко Л.Ф. Конфигурационнаая модель вещества. — Киев: Наук. думка, 1971. — 230 с.

УДК 669.14.018

Ф.И. РУДНИЦКИЙ, А.Н. ЧИЧКО, ННУКА ЮДЖИН (БПИ)

ВЛИЯНИЕ МОДИФИЦИРОВАНИЯ НА МЕХАНИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА СПЛАВОВ

Металлы и сплавы характеризуются макро- и микроструктурой, атомной и электронной структурой. Электронная структура является главной, так как через нее может быть выражено влияние других структур [1]. Таким образом задача прогнозирования сводится к задаче описания связи основных свойств сплава с электронной структурой. Наиболее удобным для измерения являются электросопротивление и термоэлектродвижущая сила. Эти свойства чувствительны к электронному строению [2]. Электросопротивление характеризует локализованную подсистему электронов, а термоэлектродвижущая сила — коллективизированную.

Экспериментальные исследования проводили на литой быстрорежущей стали P6M5. В качестве модифицирующих и микролегирующих добавок использовали Ti, Zr, Hf, Nb, Ta, Mn, Co, Ni 0,2 мас. %.

В процессе исследования определяли основные эксплуатационные свойства быстрорежущей стали — ударную вязкость, твердость, теплостойкость, а также физические — удельное электросопротивление и термоэлектродвижущую силу.

Изменение физических свойств характеризует перестройки, происходящие в электронном спектре стали при модифицировании. Введением элемента Со, например, можно увеличить локализованную электронную подсистему и уменьшить коллективизированную. При этом твердость и теплостойкость возрастут, но уменьшится ударная вязкость. И, наоборот, введением титана можно увеличить коллективизированную подсистему электронов, что приводит к увеличению ударной вязкости и падению твердости и теплостойкости.

Таким образом, в качестве основных параметров, позволяющих оценить влияние модифицирующих и микролегирующих добавок, можно использовать удельное электросопротивление и термоэлектродвижущую силу.

Измерение этих параметров позволяет, не проводя сложных экспериментов, оценивать не только влияние отдельных элементов, но главное — влияние модифицирующего комплекса.

Таблица 1. Влияние d-элементов на эксплуатационные и физические свойства стали P6M5

Элемен- ты	Термоэдс β•10 ⁻⁶ В/К	Удельное электро- сопротивление <i>р∙</i> 10 ^{−6} , Ом•м	Теплостой- кость НВС	Твердость HRC	Ударная вязкость а·10 ⁴ , Дж/м ²
Ti	25, 2	0,48	57, 5	62, 0	15, 50
Zr	14,95	0,53	59,5	63,5	8,50
Hf	25,10	0,47	59,0	63,0	13,75
Nb	25,30	0,49	58,5	62,5	16,25
Ta	25,10	0,53	60,5	63,5	10,00
\mathbf{Mn}	15,15	0,57	59,5	63,0	8,00
Co	14,80	0,64	60,0	63,5	5,00
Ni	25,30	0,53	59,0	62,5	8,00

ЛИТЕРАТУРА

1. Самсонов Г.В., Прядко И.Ф., Бредко Л.Ф. Электронная локализация в твердом теле. — М.: Наука, 1976. — 338 с. 2. Шалаев А.М., Адаменко А.А. Радиационно-стимулированное изменение электронной структуры. — М.: Атомиздат, 1977. — 176 с.

УЛК 621.742.48

Д.М. КУКУЙ, канд техн.наук, А.Т. МЕЛЬНИКОВ, Д.О. КЕЧИН (БПИ)

ВЛИЯНИЕ СОСТАВА ПРОТИВОПРИГАРНЫХ ПОКРЫТИЙ НА ФОРМИРОВАНИЕ ГАЗОВОЙ ФАЗЫ НА ГРАНИЦЕ МЕТАЛЛ—ФОРМА

Газовая фаза, образующаяся на границе металл—форма при взаимодействии жидкого металла с материалом формы, ее окислительный или восстановительный характер определяет ход химических реакций, вызывающих образование пригара на поверхности отливок. Отбор проб газа проводился по методике [1]. Установка для отбора проб состоит из металлической формы с центральным стержнем, покрытым противопригарным составом, и крышкой с отверстием для заливки расплава. К форме подключен вакуумный газоотборник, состоящий из набора пипеток. С помощью вакуумного насоса ВН-64М1 из пипеток предварительно удалялся воздух до достижения разрежения 1,3 $\rm H/m^2$. В стержень заформовывалась газоотборная трубка. Продолжительность отбора одной пробы 3—4 с. Состав газов (CO, O2, CO2) определялся с помощью хроматографа ЛХМ-8МД.

В исследованиях применялась водная противопригарная краска СБ с добавками по 5 % шунгита или сланца прибалтийского (СП). В состав шунгита входят 60–61 % ${\rm SiO_2}$, 30–31 % С и 8–10 % окислов ${\rm Al_2O_3}$, FeO + ${\rm Fe_2O_3}$, ${\rm K_2O}$, TiO₂, MgO, CaO. СП содержит 34–35 % органических веществ, 60–61 % карбонатов и остальные 5–6 % составляют окислы ${\rm SiO_2}$, ${\rm Al_2O_3}$, ${\rm Fe_2O_3}$.