высокой нагрузке, а также определить скоростные интервалы эффективного использования стальных изделий с боридными и карбидными покрытиями.

ЛИТЕРАТУРА

1. Там е ло С.А. Исследование и интенсификация твердофазного борирования стали: Автореф. дис. ... канд.техн.наук. — Минск, 1983. — 16 с.

УДК 669.018:66.094.3

Г.М. ЛЕВЧЕНКО, канд.техн.наук, А.В. ЛОМАКО, О.В. КАЛУЖСКИХ, А.Р. РАДНАЕВ (БПИ)

ЖАРОСТОЙКОСТЬ И ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА ТУГОПЛАВКИХ СОЕДИНЕНИЙ И КОМПОЗИЦИЙ НА ИХ ОСНОВЕ

Для работы в условиях высоких температур, вакуума и различных агрессивных средах особое значение приобретают тугоплавкие соединения переходных металлов IV—VI групп с кремнием, бором, углеродом и азотом. Среди этих соединений важную роль играют тугоплавкие силициды и бориды.

Анализ окисления компактных силицидов металлов IV, V и VI групп в области температур 500—1600 $^{\rm o}$ C показал, что термодинамическая вероятность формирования оксидов соответствующего металла и свободного кремния падает от силицидов металлов IV группы к силицидам металлов VI группы. И наоборот, термодинамическая вероятность образования кремнезема и низшего силицида увеличивается. При окислении ${\rm TiSi}_2$ наиболее вероятно образование низшего силицида и кремнезема. Этим обусловлено то, что наиболее стойкими против окисления являются силициды VI группы и ${\rm TiSi}_2$ [1].

При окислении силицидов V группы, за исключением VSi_2 , термодинамически равновероятно прохождение реакций с образованием $Me_5Si_3 + SiO_2$, а также кремнезема и оксида соответствующего металла. Из-за относительно большого соотношения атомных объемов металлов V группы образуется рыхлая окалина из смеси окислов металлов и кремнезема, что обусловливает низкую стойкость против окисления. При окислении VSi_2 термодинамически предпочтительнее образование кремнезема и низших оксидов ванадия, что определяет его высокую стойкость.

Таким образом, процесс взаимодействия дисилицидов металлов IV-VI групп с кислородом не сопровождается растворением его, а протекает по более простому механизму, включающему разрыв связи Me—Si и образование оксида соответствующего металла и кремния (IV группа) или разрыв связи S—Si и образование низшего силицида соответствующего металла и кремнезема (IV-VI группы):

$$MeSi_2 + O_2$$
 \Longrightarrow $MeO_2 + Si$ (IV группа);
 $MeSi_2 + O_2 \Longrightarrow Me_5 Si_3 + SiO_2$ (V-VI группы).

Стойкость против окисления компактных силицидов убывает в ряду:

$$CrSi_2 \longrightarrow MoSi_2 \longrightarrow VSi_2 \longrightarrow TiSi_2 \longrightarrow WSi_2 \longrightarrow$$
 $\longrightarrow ZrSi_2 \longrightarrow HfSi_2 \longrightarrow NbSi_2 \longrightarrow TaSi_2 \quad (500-1200 \, ^{\circ}C);$
 $MoSi_2 \longrightarrow TiSi_2 \longrightarrow VSi_2 \longrightarrow WSi_2 \longrightarrow CrSi_2 \longrightarrow ZrSi_2 \longrightarrow$
 $\longrightarrow HfSi_2 \longrightarrow HbSi_2 \longrightarrow TaSi_2 \quad (1200-1600 \, ^{\circ}C).$

Бориды тугоплавких металлов более стойки против окисления, чем силициды, особенно при более низких температурах, так как при 800—1000 °С образуются стекловидные пленки, состоящие из окисла соответствующего металла и борного ангидрида и имеющие низкую температуру плавления.

Стойкость против окисления ряда компактных боридов убывает в ряду [2]:

$$\begin{aligned} &\operatorname{CrB}_2 \to \operatorname{HfB}_2 \to \operatorname{ZrB}_2 \to \operatorname{TiB}_2 \to \operatorname{NbB}_2 \to \\ &\operatorname{TaB}_2 \to \operatorname{VB}_2 \ (600-1200\ ^{\circ}\operatorname{C}) \ ; \\ &\operatorname{HfB}_2 \to \operatorname{ZrB}_2 \to \operatorname{TiB}_2 \to \operatorname{CrB}_2 \to (1200-1600\ ^{\circ}\operatorname{C}) \ . \end{aligned}$$

Для повышения стойкости против окисления боридов используют сплавы, например, (Ti, Cr) B_2 при соотношении $TiB_2: CrB_2=4:1$ (мол. %), так как образование дополнительно оксида Cr_2O_3 , помимо TiO_2 , обеспечивает создание более эффективного барьера для ионов кислорода.

Эффект значительного повышения жаростойкости и твердости наблюдается при создании композиций из дисилицидов и боридов. Так, например, сплав 8 ${\rm TiSi}_2$ + $2\,{\rm TiB}_2$ (мол. %) окисляется значительно меньше ${\rm TiSi}_2$ и ${\rm TiB}_2$ при 1000-1200 °C [3].

Принцип создания композиций "борид-борид", "силицид-борид" и "силицид-силицид" представляет широкую возможность для поиска многокомпонентных сплавов с более высокими физико-химическими свойствами в сравнении с чисто силицидами и боридами [4].

Цель настоящей работы — получение перспективных диборидов, дисилицидов и композиций на их основе применительно к огнеупорным изделиям, электродам для электрохимических процессов и защиты графита от окисления методами свободной засыпки порошка с последующей пропиткой, связующим и обмазок на графите МПГ-6.

Спекание изделий и обмазок на графите производилось в окислительной и защитной атмосферах. Так как окисление и электрохимические свойства боридов и силицидов, а также композиций на их основе, полученных методом спекания из порошков, отличны от компактных, то исследовались их жаростойкость, электрохимические свойства и фазовый состав.

Дисилициды и дибориды металлов IV—VI групп для проведения исследования получены следующими методами: алюминотермии: $CrSi_2$; VSi_2 ; CrB_2 ; SiB_4 ; силикотермии: $MoSi_2$; прямого синтеза при 1500 °C: $TiSi_2$, $TaSi_2$,

 ${
m NbSi}_2,\ {
m NiSi}_2,\ {
m SiB}_4,\ {
m SiB}_6;\ {
m самораспространяющегося высокотемпературного синтеза (CBC)} - {
m TiB}_2,\ {
m ZrSi}_2,\ {
m NiAl}.$

Правильность расчета шихт для получения соединений подтвердил рентгеноструктурный анализ фазовых компактных образцов и порошков, проведенный на дифрактомере ДРОН-1.

Из готовых соединений использовался карбид кремния (SiC). Электродные материалы, применяемые в прикладной электрохимии, особенно на анодных процессах, либо дороги (Pt, Rh, Ru, Au), либо коррозионно нестойки. Поиск новых электродных материалов, прежде всего анодных, представляет значительный теоретический и практический интерес. Силициды переходных металлов отличаются высокой химической стойкостью в кислых и нейтральных средах. Анализ результатов поляризации при электролизе ряда электролитов с использованием в качестве электродов, полученных в компактном виде, ряда силицидов и боридов показал, что все исследованные соединения могут служить в качестве электродов при катодном процессе; при анодных процессах наиболее стойкими являются ZrSi₂, TiSi₂.

Результаты исследования жаростойкости (900, 1000, 1100 °C) в статических условиях показали, что все композиции из тугоплавких соединений достаточно стойки против окисления. Наиболее высокой стойкостью обладают композиции: 80 ${\rm TiSi}_2$ + 20 ${\rm TiB}_2$; 80 ${\rm TiSi}_2$ + 20 ${\rm CrB}_2$; 80 ${\rm TiSi}_2$ + 20 ${\rm SiB}_4$; 80 ${\rm MoSi}_2$ + 20 ${\rm SiB}_4$; 50 ${\rm CrB}_2$ + 50 ${\rm MoSi}_2$; 80 ${\rm MoSi}_2$ + 20 ${\rm CrB}_2$; 80 ${\rm ZrSi}_2$ + + 20 ${\rm CrB}_2$, увеличение массы которых за 30 ч испытания при 1100 °C составило 6—20 ${\rm Mr/cm}^2$.

Ряд композиций использовались в качестве обмазок для защиты графита от газовой коррозии и показали высокие защитные свойства в интервале температур испытания 900-1100 °C.

Увеличение массы образцов графита МПГ-6 с обмазками (t - 1100 °C, τ = 30 ч): 80 TiSi₂ + 20 SiB₄; 80 VSi₂ + 20 TiSi₂; VSi₂; 80 ZrSi₂ + 20 CrB₂ составило 4–11 мг/см².

ЛИТЕРАТУРА

1. В ойтович Р.Ф., Пугач Э.А. Окисление силицидов металлов IV—VI групп. — В кн.: Тугоплавкие бориды и силициды. Киев: Наук. думка, 1977, с. 97—107. 2. А ппен А.А. Температуроустойчивые неорганические покрытия. — Л.: Химия, 1976. — 296 с, 3. Дворина Л.А., Головко Э.И. Взаимодействие диборида титана с дисилицидом титана и кремнием при высоких температурах. — В кн.: Тугоплавкие бориды и силициды. Киев: Наук. думка, 1977, с. 133—137. 4. Тугоплавкие материалы в машиностроении: Справочник /Под ред. А.Т. Туманова и К.И. Портнова. — М.: Машиностроение, 1967. — 392 с.