Таблица 1.

Вид	Содержание, %									
метал- лизо- ванного сырья	Fe _{обш}	Fe _{мет}	SiO ₂	CaO	MgO	MnO	P	S	С	Al ₂ O ₃
Губча- тое железо	97 9	2-95	0,5	0 , 05	0,05	0,26	0,035	0,07	0,08	0,13
Метал- лизо- ванные окаты- ши	91	83,5	4,1	0,1	0,05	_	0,06	0,01	0,08	0,66

Механические свойства сталей опытных плавок характеризуются более высокими значениями пластичности. Снижение содержания углерода и вредных микропримесей в стали, полученной с использованием губчатого железа, способствует повышению эксплуатационной стойкости отливок.

Из стали марки X18H24C2Л были отлиты и испытаны в производственных условиях поддоны для печи нормализации. Стойкость опытных поддонов на 10...15% выше по сравнению со стойкостью поддонов, полученных по традиционной техно-логии.

На основании полученных результатов разработана и рекомендована к внедрению технология плавки, которая позволяет сократить расход дорогостоящих легирующих материалов и упростить технологию плавки.

УДК 621.74.043:669.715

А.М.Галушко, канд.техн.наук, Б.М.Немененок

О ВОЗМОЖНОСТИ УЛУЧШЕНИЯ СВОЙСТВ ЭЛЕКТРОТЕРМИЧЕСКОГО СИЛУМИНА

В настоящее время для получения силумина широко используют алюминиево-кремниевые сплавы электротермического способа производства. Сущность этого технологического процесса

заключается в совместном восстановлении окислов алюминия и кремния углеродом в электродуговой печи при температуре 2100-2300° С. Наличие восстановительной атмосферы способствует восстановлению практически всех элементов из ихокислов, имеющихся в сырье. Как показали результаты микрорентгеноспектрального анализа, выполненного на приборе типа Ј X4-5A, в электротермическом силумине обнаружены следующие элементы: Мп, Fe, Cr, Ti, V, Zr, Mg и Ca. Взаимодействие присутствующих примесей является причиной образования различных интерметаллических фаз, ухудшающих технологические и механические свойства отливок. Это видно из табл. 1, в которой приведены свойства силумина марки СИЛ-2 различного способа производства.

Более высокие прочностные свойства электротермического силумина обусловлены наличием в сплаве соединений титана, ванадия и циркония. Последние, как известно измельчают зерно твердого раствора на основе алюминия, вследствие чего сплав упрочняется. Однако повышенная загрязненность данного материала является причиной повышенной газонасыщенности и неудовлетворительной пластичности. Поэтому применение электротермического силумина ограничивается в основном литьем толстостенных несложных по конфигурации отливок.

С целью повышения пластичности и расширения области использования электротермического силумина проводилась обработка расплава некоторыми элементами.

Положительное влияние на изучаемую характеристику оказали калий, литий и натрий. Введение в сплав этих элементов позволило получить мелкозернистое строение эвтектики и улуч шить пластичность. Относительное удлинение также значитель— Таблица 1.

C	Свойства сплава СИЛ-2						
Способ производства сплава СИЛ – 2	предел проч- ности при растяжении, кгс/ мм ²	твердость по Бри- неллю, кгс/мм ²	относитель- ное удлине- ние, %	1			
Электротерми-	<u>.</u>		-				
ческий	21,8	65	3,0	0,56			
Синтетический	19,5	54	4,3	0,32			

но повышается при обработке расплава медью, цинком и иттрием. Влияние исследуемой группы элементов на механические свойства сплава СИЛ-2 показано в табл. 2.

Для практики литья наибольший интерес представляет медь. Это обусловлено наметившейся тенденцией к более му применению вторичного сырья для изготовления качественных отливок. Многие вторичные сплавы в числе примесей держат медь. Данное обстоятельство было использовано в VCловиях Минского моторного завода, где в шихту сплава вводится вторичный чушковый сплав АК9. Расплав обрабатывался 0,05% серы и гексахлорэтаном в количестве 0.16%. Данная обработка удвоенным количеством гексахлорэтана позволяет получать сплав с малым газосодержанием. Присутствующая во вторичном сплаве медь положительно влияет на относительное удлинение сплава АЛ4, выплавленного на базе электротермического силумина.

Таблица 2.

Микролеги-	Величина	Механические свойства				
рующий эле- мент	добавки, вес, %	Предел проч- ности при растяжении, кгс/мм ²	Относи- тельное удлинение, %	Твердость по Бри- неллю, кгс/мм ²		
Исходный сплав	<u>-</u>	21,8	3,0	65		
Медь	0,05	21,3	5,2	63,9		
	0,1	21,3	4,5	63,9		
	0,2	21,8	4,3	65,5		
	0,3	23,2	4,0	70,6		
Цинк	0,1	19,6	4,6	59,5		
	0,2	19,9	4,7	58,1		
	0,3	20,8	5,0	59.5		
Иттрий	0,05	20,3	4,3	59,5		
	0,1	20,6	5,0	62,4		
	0,2	21,6	3,84	62,4		
	0,3	18,9	2,2	62,4		

Таким образом, выполненные исследования доказывают принципиальную возможность расширения области применения силумина электротермического способа производства.

УДК 621.74.043:669.715

Б.М.Немененок, Э.Л.Костюкевич, Ю.В.Маркаров, В.С.Очеретяный, Л.С.Мурашкина, Г.В.Довнар

ПРОЦЕСС ПЛАВКИ СПЛАВА АЛ4 С ИСПОЛЬЗОВАНИЕМ В ШИХТЕ ВТОРИЧНОГО ЧУШКОВОГО СПЛАВА АК9

В цехе алюминиевого литья Минского моторного завода проводилось исследование особенностей плавки сплава АЛ4 на шихте, состоящей из силуминов различного способа производства и 20% вторичного чушкового сплава АК9.

Шихта готовилась из 40-60% свежих материалов, остальное количество из возврата собственного производства. Таким образом общая масса вторичного сырья в шихте достигала 40-50%. Плавки проводили в промышленных печах типа ИАТ-6. Жидкий сплав обрабатывался добавкой 0,16% гексахлорэтана и жидким универсальным флюсом в количестве 1,0% от массы плавки. Часть металла дополнительно микролегировалась серой. Ее количество составляло 0,01%. Металл каждой плавки подвергался контролю по химическому составу, механическим свойствам, газонасыщенности, жидкотекучести и количеству брака наиболее браконосных отливок.

Химический состав сплава всех плавок находился в пределах требований ГОСТа 2683-75 на сплав АЛ4: Si -8.0 -10.5; Mg -0.17 -0.34; Fe -0.32 -0.86; Mn -0.17 -0.50; Cu -0.13 -0.30.

Анализ содержания газов и загрязненности металла показал, что после рафинирования и микролегирования он может быть использован для получения качественных отливок. Содержание газов в металле находилось в пределах 0,23-0,34 см³/100 г.

Влияние природы силумина и присадки серы на жидкотекучесть и механические свойства сплава АЛ4 показано в табл.1.