Э.Л. Диффузионное цинкование деталей машин. — "Технология транспортного машиностроения", 1956, №6. 4.Гончаревский М.С. и др. Влияние технологии оцинкования на структуру и прочность термодиффузионных железоцинковых покрытий. — В сб.: Производство труб, вып. 9. М., 1963. 5.Проскуркин Е.В., Горбунов Н.С. Диффузионные цинковые покрытия. М., 1972.

УДК 621.793.6

Л.С. Ляхович, докт. техн. наук, Г.М. Левченко, канд. техн. наук, М.М. Ильюкевич

ДИФФУЗИОННОЕ НАСЫШЕНИЕ МЕДИ

В последние годы возрос интерес к химико-термической обработке меди. В печати появились работы по созданию диффузионных покрытий на меди и ее сплавах с целью повышения окалиностойкости, износостойкости и коррозионной стойкости в ряде агрессивных сред (фурмы доменных печей, кристаллизаторы УНРС, жала паяльников, детали криогенных систем, работающие в атмосфере аммиака и в парах нашатырного спирта, и т.д.). Появились первые рекомендации по использованию химико-термической обработки меди и медных сплавов в промышленности; различные методы обработки опробованы на конкретных деталях.

В настоящей работе проводились: разработка новых методов получения диффузионных покрытий на меди с применением традиционного способа и металлотермического, изучение структуры, фазового состава и свойств покрытий при насыщении из шихт оптимального состава, разработка практических рекомендаций по их применению.

Влияние состава и условий насыщения на формирование комплексных покрытий исследовалось на меди марки М1.

При разработке составов для комплексного насыщения использовали порошки A1,Ni , Fe,C,KaCu , A1 $_2$ O $_3$, TiO $_2$, NiO, Cr и активаторы NH $_4$ C1, A1F $_3$.

Результаты исследования структуры и фазового состава приведены в табл. 1.

Жаростойкость Fe + Al и Ni + Al покрытий при 950° C за 25 ч испытания увеличилась в 4—5 раз. Для повышения

Таблица 1.

Тип покрытия	Состав насыщающих смесей, вес.%	Фазовый состав
Fe+Al	100%/40%A1 ₂ O ₃ +60%(70% Fe +30%A1)/+ 5%A1F ₂	(CuFe)3Al, TB.p-p Al H Fe B
	3 .	Си с включением (CuFe) ₃ A1
Ni+Al	100%/40%A1 ₂ O ₃ +60% (60%Ni +40%A1)/+	(NiCu)Al, TB.p-p Ni H Al B Cu
	+5%A1F3	с включением (CuNi) ₃ A1
Ni+Si	100%/50%A12O3-50%(80%NiO +20%KaCu)+тв.р-р Ni и Si в Cu с включен.	
	+3%A1 F ₃	Ni ₂ Si /(NiCu) ₂ Si /
Ni+C	100%/50%A1 ₂ O ₃ +50%(85% NiO+15%C)/+	тв.р-р Ni в Сис включением
	+6% NH ₄ C1	графита: 0,7-0,85%С

стойкости в концентрированном раствој NH_4 ОН можно рекомендовать (по степени убывания стойкости) следующие покрытия: Ni + Al, Ni + Si и Ni + C; в соляной кислоте Ni + Si –покрытие.

Резюме. Проведенные исследования показали возможность диффузионного насыщения меди (как из чистых порошков металлов, так и из окислов) и повышения жаростойкости и кислотостойкости диффузионно-насыщенной меди.

УДК 621.7.044.2

В.И. Беляев, докт. техн. наук, Д.Г. Девойно, В.Б. Касперович, канд. техн. наук

О ВЛИЯНИИ ПРЕДВАРИТЕЛЬНОЙ ТЕМПЕРАТУРЫ НА ПРОЧНОСТЬ СОЕДИНЕНИЙ, ПОЛУЧЕННЫХ СВАРКОЙ ВЗРЫВОМ

В настоящее время сварка взрывом все шире используется в различных областях техники. При определении наиболее существенных условий сварки во мнениях исследователей наблюдается определенное расхождение. В работе [1] показано, что давление соударения должно быть больше некоторого критического. И.Д. Захарченко [2] для многих металлов экспериментально получены зависимость угла соударения (χ) и скорости точки контакта (V), которая определяет нижнюю границу процесса схватывания

$$\gamma \ge 1.14 \sqrt{\frac{H_V}{-\frac{\rho}{V_k^2}}}, \qquad (1)$$