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Annotation. The loss function is an important part of the segmentation method
based on deep learning, and the improvement of the loss function can improve the seg-
mentation effect of the network from the root, however, there are few literatures to do
specific analysis and summary of various types of loss functions, this paper summaries
some commonly used loss functions from the common problems in the current medical
Image segmentation task.

The loss function has important meanings such as measuring segmentation accuracy,
promoting model convergence, improving spatial consistency, and improving the generali-
sation ability of the model. Following loss functions are commonly used:

1. Cross-entropy loss: this is a loss function commonly used for classification
tasks and can also be used for image segmentation at the pixel level, which measures
the loss by comparing the difference between the model's predicted segmentation re-
sults and the true labels. A number of articles have studied it, [1] have chosen to apply
CE Loss in segmentation models. The formula for cross-entropy loss is as follows:

Leg = _Zic=1Qi log(p;).

2. Dice loss: it is used to measure the overlap region between the predicted and
true values, it works better when in dealing with the category imbalance problem. DSC
reflects the segmentation results with the real situation size and localisation con-
sistency, which is more in line with the perceived quality compared to the pixel level
evaluation metrics. The Dice Loss formula is as follows:

2TP
2TP+ FP+ FN °

Dice =
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Jaccard Loss: it is based on Jaccard Index, also known as Intersection over Union
(loU) Loss, is a commonly used loss function for semantic segmentation tasks to eval-
uate the similarity between the segmentation results of a model and the real segmented
labels[2]. The larger the value of Jaccard coefficient, the higher the sample similarity.
Jaccard loss formula is as follows:

TP _ Dice
TP+ FP+FN 22— Dice’

10U =

The loss function is an important module in biomedical image segmentation, the im-
provement of the loss function can solve a variety of problems in the task of biomedical
Image segmentation, and the improvement of the loss function has a broad prospect in the
improvement of the performance of medical image segmentation models.
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Annotation. This paper aims to introduce the design of a bracelet system for health
monitoring and drug management serving nursing homes, in order to improve the qual-
ity of life of the elderly while improving and reducing the waste of human resources
and reducing costs.
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