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1.Introduction :

To estimate any experimental method in mechanics of materials, it is needed to
recognize the relation between stress state in a specimen and loading. In the case of shear tests
on flat specimens for anisotropic materials it is difficult to obtain a perfect material reaction to
the given loading. The method, known as the Iosipescu shear test, is used most often in the
literature and is the one recommended by the standards to the prediction of the shear
properties of anisotropic materials. In the Iosipescu test, an existence of pure shear is
assumed. Fig 1a shows the scheme of specimen loading in the Iosipescu method.
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Fig.1. (a) The scheme of loading of the Iosipescu specimen, (b) The assumed loading
distributions on the loading blocks
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On the basis of the simple theory of beams the losipescu specimen treated as a
rectangular beam, is subjected to four-point asymmetrical bending and therefore shear stress
is calculated (by Adams, Wolrath (1987,1983)) in the central part, according to the formula:

r=N/A 1)

where: N -shearing force, 4 -beam section in the central part.

In fact in the Iosipescu specimen mounted in both sides of the test fixture one side of the
fixture is displaced vertically while the other side remains stationary. It is important to note
that, there is no uniformly distribution of the reaction forces on loading blocks.

The aim of this paper is to calculate the stress state in the central part of the specimen by
an analytical method. The Iosipescu specimen is considered as a flat plate, because the width
of the beam is large compared with the thickness and comparable with its length.

2. Analytical Solution

A rectangular beam of length 2/, width 2h, and thickness ¢ << A, fixed asymmetrical at
each end in the loading blocks has been considered. The upper and bottom contact area
between the blocks and the flat plate has length (/-a) and (7-5). The additional assumption
is made that the ends of the flat plate are unsupported. The presented plane problem of
elasticity is solved by the method of stress function F in a form of the Fourier series with
given stress boundary conditions according to Fig. 1b. Orthotropic constants of elasticity were
introduced as for beech wood to the calculations. The axes x and y in Fig 1b. coincide with the
main orthotropy axes of the analyzed material, according to L and T. Stress field in the flat
plate is described by the formula: .

' 2 2 2
o =a_}z'.,o- =_a_i’1-xy=_—.a F Y ' ' (2)
ox oy
where: F — stress function. The Stress function is the solution of fourth-order biharmonic
differential equation in the form (Lechnickij(1947)):

4 4 ' 4 '
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To simplify the calculations the loading in Fig. 1b is divided into the following parts:
symmetrical and asymmetrical, therefore the stress function is built in the form of the formula
F =F(x,y)+ F,(x,y) . In the case of symmetrical loading the stress function F;(x,y) in the
form of the cosine series was assumed. To satisfy the boundary conditions two additional
expressions are introduced to the cosine series:

'
!

F(x,y)= Z cosa,,X[Cich(Ga,,y) + C,sh(Ga,, y) + @
m=1

+ Cseh(Hay,y) + Cysh(Ha, y)] + Csxy = £1(%, ),

where: «,, =ﬁ;£, m=123..., C,C,,C,,C,,Cs-constants, f,(x,y)-special function is taken

from the obtained symmetrical solution, which considers the edge ends of the flat plate as
unsupported. For asymmetrical loading stress function F,(x,y) in the form of the sine series
with one additional expression was assumed.
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FE(x,y)= i sina, x[D,ch(Ge,y) + D,sh(Ga,,y) (5
m=1

+Dych(Ha,y) + Dysh(He, y)] - fo(%, ),
a =ﬁl”_ , m=123..., D,,D,,D;,D,-constants, f,(x,y)-special function is taken from the

obtained asymmetrical solution, which considers the edge ends of the flat plate as

unsupported. In this paper stress distributions in the central part of the flat plate is considered
therefore shear stress 7, can be determined at the asymmetrical loading but normal stress at

the symmetrical loading. Functions f;(x,y) and f,(x,y) in expressions (4) and (5) can be
treated as stress functions, which provide solutions of the stress field at the ends of the plate,
the same as in the case of their elimination. In order to determine the constants in symmetrical
problem the stress boundary conditions are formulated as following: '

y=th->1, =0,

y=th—>o,, =+q(x)

6
x=xl>0, =0 ©6)
x=tl—>1,=0

C 2| !
where: g,(x) = —21 + ZC,,, COS,X ,Cy = —l—[ IO.S y(x)dx + IO.S Vs (x)dx],
m=1 a b
- ! ! : '
c, = —?—l: J‘O.S Yi(x)cosa,,xdx + IO.S ¥,(x)cos amxdx] . While in asymmetrical problem it is
a b
assumed:
y=th—>r, =0,
y=th—>o, =1q,(x) 7
x=tl->0,=0
/ x=tl—>7,=0
) 2 1 ]
where: g, (x) = Z d,sina,x,d, = —l-[ IO.S y,(x)sina,,xdx + _[0.5 ¥,(x)sin a,,,xdx] The
m=1 a b
integrand functions y, (x), ¥, (x) in the given above integrals have the following form:
N(x)=—Ax+ 4 ®)

Ya(x)=A1x - A,
The integrand functions y; (X), , (x) satisfy, according to Fig 1b. the conditions:
yl(x = a) =+p,, yl(x =l) =—D.> yz(x =b) =—Dp> yz(x=l) =+p.,

I
l_[yl (x)dx + II.V2 (x)dx=N, Ij‘yl (x)xdx + IJ’z(x)de =0.
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3.Numerical Solution
Numerical calculations of the stress state in the plate were carried in the range of linear
elasticity of material by FEM. The finite element computations were performed using the
MSCPatran/Nastran. Model 2-D of the orthotropic plate was built takmg into con51derat10n

the elastic constants from Tab.1.
: . Table 1

Elasticity constants for beech wood in the orthotropy plane LT

Eyp Eppr Gip vir VTL
GPa GPa GPa
14.24 1.07 0.91 0.469 0035

The finite element mesh with two displacement components, i.e. u,v consists of

isoparametric ,eight-nodes quadrilateral elements. The displacements boundary conditions
were introduced for the following nodes: :

x=0,y=0->u=0,0=0

b<x<l,y=+h—>u=0,u=——20-‘-’-
a<x<l,y=—h—)u=0,v=_TU° o 9)

—l<x<—a,y=+h—)u=0,v=%

~l<x<-b,y=-h—>u= 0,0=2

In this way the total displacement of the plate was equal Uy
4. Conclusions
The stress fields in the central part of the flat plate, obtained by the analytical and
numerical methods are presented in Figs. 2,3. The presented analytical solution contains a
sum of only seven terms of the trigonometrical series. The mentioned number of terms, i.e.
m=1,2...7 gives satisfactory approximation of loading distributions in the form of (8) by
the trigonometrical series. The presented in Figs. 2,3 stress distributions O'xx R Txy R O'yy were
normalized in respect to the average shear stress 7y, occurring in the central part of the flat

plate. The average shear stress 7 xy was calculated independent for both solutions, as follows

Txy = I 7.7 (0,y)dy (10)
2h
where: 1,,(0,y)- shear stress for x=0, h- half of width of the flat plate. The value y, was

normalized in respect to the width A. In the Figs 2,3 shear stress t calculated by formula (1)
was also presented.
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Fig.3. Numerical solution

The conducted analyses shows convergence between analytical and numerical solutions,
even for a few number of terms of the trigonometrical series (4) i (5). Additionally, the
analyses confirmed the usefulness of formula (1), which correctly describes average shear
stress in the central part of the Iosipescu specimen.
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Fig.4. Normalized distribution of the reaction forces at the upper loading block
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Fig.5. Normalized distribution of the reaction forces at the bottom loading block

Existence of positive values of the reaction forces in the loading distributions on the
loading blocks can be treated as a kind of singularity in the analytical solutions. It is important
to note that, this singularity is also associated with numerical solutions. The mentioned
singularity was presented in Figs 4,5. The presented in Figs. 4,5 loading distributions
occurring at the upper and bottom contact _area were normalized mdependent for both
solutions in respect to the average shear stress 1,y (10).
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OB DY®®EKTHBHOCTH ITIPUMEHEHHS] HEKOTOPBIX METOJI0B
MEXAHUKHU JE®@OPMHUPYEMOI'O TBEPAOT'O TEJIA
K PEHIEHUIO 3AJAY TEXHUYECKOU TUATHOCTHKHA

KBenopycckuii nayuonanvHeiti mexnuveckuil ynueepcumem
Munck, benapyco

OcHoBHO# 3amaueif TEXHHYECKOH MMATHOCTHKH SBJISETCS IIOBBINEHHE HAIEXHOCTH
O00bEKTOB Ha OJTalle MX IPOM3BOJACTBA, OSKCIUTyaTallMM H XpaHeHHA. J[HarHOCTHYECKOe
obecniedeHHe II03BOJIIET IOBBICHTH JOCTOBEPHOCTh IPaBHJIBHOrO ()YHKIHOHHPOBAHHS
OOBEKTOB, YBEIMYHTh CPOK HX CIyObl M HapaGOTKy Ha OTKa3. Boiblmoe 3HaueHwe mis
HMHXCHEPHON IpaKTHKH HMEIOT pelIeHHs 3aqad IPOrHO3MPOBAHHSA, B YacTHOCTH, IS
OpraHM3alMH TEXHUYECKOrO OOCTY)XHBaHHS IO COCTOSHHIO, BMECTO OOCIY)XHBaHHS IO
pecypcy. HemocpencrBeHHOe mepeHeceHHe METONOB pEIleHHs 3aiad AUAarHOCTHPOBAHHUS Ha
3a7ayd MPOTrHO3HPOBaHMs HEBO3MOXKHO H3-3a pa3IH4UsA MOAeJe, C KOTOPBIMH IPHXOJUTCS
paboTaTh: NpU AHArHOCTHPOBAaHMH MOJEJBI0O OOBIYHO SBJIAETCS ONMMCaHUE O0BEKTa, B TO



