УДК 618

МЕХАНИЗМ ВЗАИМОДЕЙСТВИЯ ИОНОВ Sm³+ В ИТТРИЙ-АЛЮМОБОРАТНЫХ СТЕКЛАХ С СОСТАВОМ ВБЛИЗИ СТЕХИОМЕТРИИ ХАНТИТА

Прусова И.В.¹, Прихач Н.К.¹, Суходола А.А.¹, Мамаджанова Е.Х.²

¹Белорусский национальный технический университет Минск, Республика Беларусь, ²Российский химико-технологический институт им. Д.И. Менделеева, Москва, Российская Федерация

Аннотация. На основе анализа кинетики затухания люминесценции ионов самария в стеклах системы $Sm_xY_{1-x}Al_3(BO_3)_4$ установлено, что донорно-акцепторные взаимодействия этих ионов осуществляются по диполь-квадрупольному механизму.

Ключевые слова: люминесценция; редкоземельные активаторы; механизмы донор-акцепторного взаимодействия.

MECHANISM OF Sm³⁺ IONS INTERACTION IN YTTRIUM-ALUMINOBORATE GLASSES WITH COMPOSITION CLOSE TO THE STOICHIOMETRY OF HUNTITE Prusova I.¹, Prikhach N.¹, Sukhodola A.¹, Mamadzhanova E.²

¹Belarusian National Technical University
Minsk, Republic of Belarus
D.I. Mendeleev University of Chemical Technology
Moscow, Russian Federation

Abstract. It is shown on the basis of analysis of luminescence decay kinetics of samarium ions in glasses of the $Sm_xY_{1-x}Al_2(BO_3)_4$ system that donor-acceptor interactions of these ions are realized by dipole-quadrupole mechanism.

Key words: luminescence; rare-earth activators; donor-acceptor interaction mechanisms.

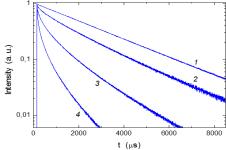
Адрес для переписки: Прусова И.В., пр. Независимости, 65, г. Минск, 220113, Республика Беларусь e-mail: bntu@bntu.by

Ионы ${\rm Sm^{3+}}$ обладают существенным спектроскопическим потенциалом, поскольку они характеризуются люминесценцией в видимой и ближней инфракрасной областях спектра и отсутствием наведенного поглощения из метастабильного состояния [1]. Это позволяет рассматривать активированные ими стекла и кристаллы в качестве возможного активного лазерного материала и люминофоров, в том числе для светоизлучающих диодов. Целью настоящей работы является определение механизма взаимодействия таких ионов в стеклах системы ${\rm Sm_x Y_{1-x}Al_2(BO_3)_4}$.

В качестве исходных компонентов для получения стекол использовали Sm_2O_3 и Y_2O_3 квалификации «осч», $Al(OH)_3$ (чда) и H_3BO_3 (хч). Плавку приготовленной шихты осуществляли в платиновых тиглях в электрических лабораторных печах сопротивления с SiC нагревателями на воздухе в течение часа при температуре $\approx 1550\,^{\circ}\text{C}$. Расплав выливали на металлическую плиту и прессовали другой до толщины $\sim 2-3$ мм.

Кинетика затухания люминесценции исследовалась с помощью импульсного лазера на этанольном растворе родамина 6Ж ($\lambda \approx 562$ нм, длительность импульса 10 нс), фотоумножителя и цифрового осциллографа с конечным временным разрешением <1 мкс.

Как известно [2], дезактивацию метастабильного состояния активаторов в упрощенном случае можно описать с помощью выражения:


$$N(t) = N(0)\exp(-t/\tau_0 - \gamma t^{3/S} - Wt). \tag{1}$$

где N(0) и N(t) — заселенность метастабильного состояния в начальный момент времени и последующие; τ_0 — радиационное время жизни; γ — макропараметр ферстеровского распада; S — параметр мультипольности, равный соответственно 6, 8, 10 для диполь-дипольных, диполь-квадрупольных и квадруполь-квадрупольных донор-акцепторных взаимодействий, W — вероятность миграционнообусловленной релаксации возбуждений. Определение механизма взаимодействия в таком случае сводится к поиску значения S, приводящего к линеаризации зависимости кроссрелаксационных потерь $\ln(I_0/I)$ — t / τ_0 от $t^{3/S}$.

На рисунке 1 представлена кинетика затухания люминесценции ионов Sm^{3+} в исследованных стеклах при $\lambda_{per} = 598$ нм и $\lambda_{возб} = 562$ нм ($\lambda_{возб} = 404$ нм для образцов с минимальным значением N_{Sm}). Объемная концентрация этих ионов N_{Sm} составляла (10^{20} cm³): 0,18 (образец 1); 1,0 (2); 3,3 (3); 6,8 (4). Здесь и ниже номера кинетических кривых соответствуют номерам указанных образцов.

Видно, что для стекла с $N_{Sm} = 1,8 \cdot 10^{19}$ см⁻³ затухание люминесценции в первые 10 мс подчиняется экспоненциальному закону с постоянной $\tau_e = 2650\pm40$ мкс. За пределами этого участка скорость затухания постепенно уменьшается и на дальнем участке в диапазоне 19–26 мс удовлетворительно описывается экспонентой с постоянной

 $au_{\rm far} = 3360\pm70\,$ мкс. По мере увеличения концентрации Sm в стекле с 1,0 \cdot 10²⁰ (кривая 2) до 6,8 \cdot 10²⁰ см⁻³ (кривая 4) закон затухания на изображенном участке все в большей степени отклоняется от экспоненциальной зависимости, и средняя длительность затухания снижается с 1620 до 220 мкс. Тем не менее, при времени затухания более 20 мс дальний участок кривой затухания люминесценции остается практически экспоненциальным с $au_{\rm far}$ составляющим 3240 \pm 90 и 3160 \pm 100 мкс (для стекол, описываемых кривыми 2 и 3 соответственно). Это позволяет приравнять $au_{\rm c} = au_{\rm e}$, пренебречь W в выражении (1).

Рисенок 1 — Кинетика затухания люминесценции ионов ${
m Sm}^{3+}$ в исследованных стеклах с различной N_{Sm}

На рисунках 2—4 изображены зависимости кроссрелаксационных потерь от $t^{3/S}$ для различных N_{Sm} , определенные на основе рисунка 1. Как видно, линеаризация полученных зависимостей осуществляется при параметре мультипольности S=8.

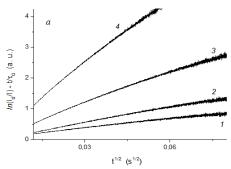


Рисунок 2 — Зависимость кроссрелаксационных потерь в исследованных стеклах от $t^{1/2}$

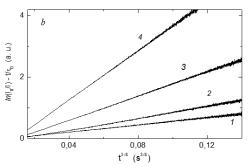


Рисунок 3 — Зависимость кроссрелаксационных потерь в исследованных стеклах от $t^{3/8}$

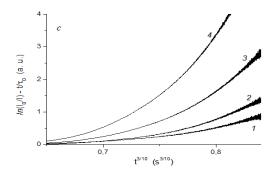


Рисунок 4 — Зависимость кроссрелаксационных потерь в исследованных стеклах от $t^{3/10}$

Таким образом, донор-акцепторное взаимодействие ионов Sm³⁺ в исследованных иттрийалюмоборатных стеклах осуществляется по диполь-квадрупольному механизму.

Авторы выражают признательность гл. н. сотр. Института физики НАН Беларуси Г.Е. Малашкевичу за полезные консультации.

Литература

- 1. Спектрально-люминесцентные свойства Sm- и Ce–Sm-содержащих кварцевых гель-стекол / Г.Е. Малашкевич [и др.] // ФТТ. 1998. Т. 40, № 3. С. 458–465.
- 2. Исследование природы безызлучательной релаксации энергии возбуждения в конденсированных средах с высоким содержанием активатора / Ю.К. Воронько [и др.] // ЖЭТФ. 1976. Т. 71, вып. 2(8). С. 478—496.