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MILD SOLUTION OF THE CAUCHY PROBLEM FOR A SEMILINEAR NONSTRICTLY
HYPERBOLIC EQUATION ON A HALF-PLANE IN THE CASE OF A SINGLE CHARACTERISTIC
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Abstract. For a semilinear nonstrictly hyperbolic equation on a half-plane in the case of a single characteristic given in
the upper half-plane, we consider the Cauchy problem, for which we study issues related to the mild solution.
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Statement of the problem. In the domain
Q = (0,) x R, consider the m™-order nonlinear
differential equation

(@¢ — ad, + b)™u(t,x) = f(t,x,u(t,x)), (1)

where a and b are given real numbers, satisfying the
condition a # 0 (it means that the line t = 0 is not
the characteristic of Eq. (1)), and f is a function given
on the set Q x R.

Equation (1) is equipped with the initial condition

0iu(0,x) = @;(x),i=0,..,m—1,x €R, (2)

where «; are functions given on the real axis.

Eqg. (1) describes a wavefield resulting from the
superposition of m waves traveling in one direction
with equal velocity. When m = 1, Eq. (1) is called
the one-dimensional transport equation. Equations of
the kind (1) appear in many physical phenomena
where discontinuous or singular entities are involved,
for instance, in the wave propagation in a layered me-
dium [1]. Eq. (1) is also used for the modeling k-out-
of-n systems [2] and can have some applications in
classical field theory.

The existence and uniqueness of classical solu-
tions of the problem (1), (2) were studied in our pre-
print [3].

Reduction to the Cauchy problem for an ordi-
nary differential equation. Making the linear
nondegenerate change of independent variables
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T=t, {=x+ at, and denoting u(t,x) = v(t,%),
we obtain the new differential equation
(ar + b)mv(‘[, E) = F(T! E'U(T! E))! (3)

where F(t,§,v) = f(t,§ — at, v). The initial condi-
tions for the function v can be computed using the Faa
di Bruno’s formula or the chain rule, and they have
the form

U(O, E) = (’bO(E) = (\OO(E)i a‘év(or E) = (le(z) =

=%, (Il) (—a)" D ;(®,i=1,..,m—-1. (4)

Now Eg. (3) with the conditions (4) can be con-
sidered as the Cauchy problem for an ordinary differ-
ential equation with the parameter &, i. e.,

0 +b)"ve(r) = F (vE (D), ()
D'veg(0) = §;(§),i=0,...m—1, (6)

We can say that the problems (1), (2) and (5), (6)
are the same in the sense that the first is written in
Eulerian coordinates (t, x) and the second in Lagran-
gian coordinates (T, §).

To simplify Eq. (5), we use the following ansatz

vg (1) = we (1) exp(—b1). @)
Substituting (7) into (5), we obtain the equation
prwi(t) = @ (TEwi(®),  (8)

where
®(t,§,w) = F(t, &, wexp(—b1)) exp(b1).
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The Cauchy conditions have the form

wg(0) = o (8) = exp(bt) G, (%),
D'we(0) = U;(8) =

= i C) bg_j®),i=1..,m—1.
j=0

Now we can use the theory of generalized solu-
tions for ordinary differential equations to construct
generalized solutions of the Cauchy problem (1), (2).

Note that the smoothness of the "new" initial con-
ditions is not worse than the "old" ones in the sense
that @; € C"{(Q) if and only if §; € C*~{(Q) and
@; € C™H(Q) if and only if y; € C*7{(Q), where
QcRn=m—-1,andi=0,..,m—1.

Mild solution. The classical and mild solutions of
the problem (8), (9) can be represented as [4]

et 1
il (m—1)!

©)

We ()=

i=0
T

X J- P (1'1, g WE(Tl)) (t—t)™ dr,.
0
Returning to the original variables, we get
= Y;(x + at) exp(—bt) t* N
4 i!
o (10)
1 m-1
+ mf[exp(—b(t -0) (-1 X

x f(t,x -(:- a(t —1),u(t,x +a(t —1)]dr.

u(t,x) =

We can use Eg. (10) to define a mild solution of the
Cauchy problem (1), (2).

Definition 1. The function u is a mild solution of
the Cauchy problem (1), (2) if it is a solution of
Eg. (10).

Theorem 1. Let the conditions f € C(Q x R),
and @; € C™1(R), i = 0,...,m — 1, be satisfied,
and let the function f satisfy the Lipschitz condition

|f(t!x!zl) _f(tﬂx!ZZ)l < K(t!x)lzl _Zz|,

where K € C(Q x R). The Cauchy problem (1), (2)
has a unique mild solution in the class C(Q).

The proof of the theorem is carried out using the
Leray—Schauder fixed point theorem.

Note that, in contrast to strictly hyperbolic equa-
tions [5], here we have to increase the smoothness of
the initial data by m — 1 times to construct a weak
solution because the functions ¢;;, i =0, ...,m — 1,
must be continuous and defined everywhere. It is be-
cause the characteristic has a multiplicity m. Any
characteristic of multiplicity k entails increasing the
smoothness of the initial data by k — 1 times to con-
struct a well-defined solution [6].

Remark 1. In Theorem 1, the smoothness condi-
tions "¢@; € C™ " 1(R), i =0,..,m—1" can be
weakened to «the functions @;,i = 0, ..., m — 1, have
all derivatives up to order m — i — 1, which are de-
fined everywhere on the set R and are piecewise con-
tinuous». But the solution will no longer be continu-
ous on the set [0, ) X R. Instead, it will be discon-
tinuous on some characteristics x + at = const.

Further weakening of the smoothness conditions
for the initial data to piecewise smooth functions or
to functions belonging to the Sobolev spaces can lead
to difficulties in defining the functions y;, i =
0,..,m —1, since a discontinuous function has no
derivative, even in a weak sense.

Theorem 2. Let the conditions f € C(Q x R) and
0,fC12ou =3) EC(Q xR) be satisfied. The
Cauchy problem (1), (2) has at most one mild solution
defined on the set @ in the class of measurable
functions, which are bounded on every compact
subset of Q.

The proof of the Theorem 2 is carried out by con-
tradiction using the mean value theorem and the
Gronwall inequality.
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