Литература

1. Липатов Л.Н. Методика расчета оптимальной системы автоматического управления статическим объектом. – В кн.: Автоматизация химических производств, вып. 4. М., 1963. 2. Беляев Ю.К. Аналитические случайные процессы. – В сб.: Теория вероятности и ее применение, вып. 4, 1959. 3. Пугачев В.С. Теория случайных функций и ее применение к задачам автоматического управления. Изд. 3. М., 1962. 4. Солодовников В.В. Статическая динамика линейных систем автоматического управления. М., 1960.

УДК 62-83:621.313.323:66

О.Н. Парфенович, канд. техн. наук, М.П. Слука

ТИРИСТОРНЫЙ ЭЛЕКТРОПРИВОД ПРЯДИЛЬНЫХ МАШИН

В процессе формования полиэфирных волокон необходимо обеспечить минимальное отклонение по толщине и удлинению [1].

Прядильно-формовочный агрегат может быть представлен объектом с входной величиной X и выходной У. В качестве выходной величины рассмотрим номер нити N. В общем случае к объекту регулирования прикладывается п возмущений f_1,\ldots,f_i , ..., f_n . Тогда изображение отклонения выходной координаты У от заданного значения У от заданного значения У от заданного значения У

$$L\left[(y_{o}(t) - y(t)) \right] = K_{1}(p) L\left[f_{1}(t) \right] + \dots + K_{i}(p) L^{x}$$

$$\times \left[f_{i}(t) \right] + \dots + K_{n}(p) L\left[f_{n}(t) \right], \qquad (1)$$

где $K_1(p),\ldots,K_i(p),\ldots,K_n(p)$ – выражения передаточных функций системы, полученные по соответствующему входу при условии равенства нулю всех других возмущений.

Из (1) видно, что точность поддержания стабильности толщины нити в квазиустановившемся режиме зависит как от параметров самого объекта, так и от возмущений, воздействующих на него. Рассмотрим взаимосвязь технологических параметров из электроприводов дозирующих насосов и намоток относительно изменения толщины (номера) нити N, считая тепловые процессы в прядильной шахте стационарными.

Количество расплава Q_1 , подаваемое в единицу времени дозирующим насосом при формовании нити требуемого номера, равно

$$Q_1 = 0.25 \text{ md}^2 \text{ yr V}_{\text{M}},$$
 (2)

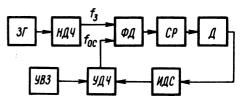
где V_u — скорость истечения струйки расплава удельной плотностью δ из отверстия фильеры диаметром d; m число отверстий.

Вес нити, наматываемой в единицу времени на бобину [2],

$$Q_2 = 10^3 \, k \, V_0 / N$$
 , (3)

где k - коэффициент, учитывающий влажность и количество замасливателя; V_{α} - скорость формования.

Решая (2) и (3) относительно N, получим


$$N = \frac{410^{3} k}{\pi m} \frac{V_{\mu} + \Delta V}{V_{\mu} + d^{2} \gamma}, \qquad (4)$$

В первом приближении погрешность \triangle N равна

$$\Delta N = \frac{\partial V}{\partial A} M A + \frac{\partial V}{\partial A} \Delta V + \frac{\partial V}{\partial A} \Delta V + \frac{\partial V}{\partial A} \Delta V + \frac{\partial V}{\partial A} \Delta V$$
(5)

Допустимая разнотолщинность для высокопрочных технических нитей 1 – 2 %. Решая (5) методом линейного программирования, получим допустимое отклонение скорости электроприводов дозирующих насосов и намоток, равную 0,07 . . . 0.1%.

Рис. 1. Блок-схема электропривода: 3Г-задающий кварцевый генератор; НДЧ, УДЧ-неуправляемый и управляемый депители частоты; ФД-фазовый дискриминатор с непериодической многопетлевой нормированной карактеристикой; СР статический регулятор; Д — двигатель; УВЗ-устройство ввода; ИДС — фотоимпульсный датчик скорости.

Такая точность стабилизации трудно реализуется в непрерывной системе. Поэтому применительно к импортным плавильно-прядильным агрегатам по производству полиэфирного кордного волокна на Могилевском производственном объединении "Химволокно", разработан электропривод с фазо-импульсным управлением в котором фазовое рассогласование выявляется статическим триггером. Блок-схема привода приведена на рис. 1.

Сигналы задания частотой f и обратной связи f подаются на ФД. На выходе ФД получаем напряжение, пропорциональное углу фазового рассогласования частот f в u f о.с' которое является заданием для CP.

Исследуемый образец привода показал высокие динамические свойства (диапазон синхронизации равен диапазону удержания) при статическом отклонении скорости менее 0,1%.

Резюме. Применение принципа фазовой автоподстройки частоты [3] в электроприводе прядильных машин позволяет обеспечить стабилизацию скорости с отклонением менее 0,1%, при разнотолщинности формуемой нити менее 1%.

Литература

1. Фурне Ф. Синтетические волокна. Получение и переработка. Пер. с нем. М., 1970. 2. Браверман П.Ф., Чачхиани А.Б. Оборудование и механизация производства химических волокон. М., 1967. 3. Шахгильдян В.В., Ляховкин А.А. Система фазовой автоподстройки частоты. М., 1972.

УДК 621.313.333

Б.И. Фираго, канд. техн. наук, В.Г. Сидоров

ДОПУСТИМЫЙ МОМЕНТ АСИНХРОННОГО ДВИГАТЕЛЯ ПРИ КВАЗИЧАСТОТНОМ УПРАВЛЕНИИ

Основой для расчета допустимого момента асинхронного двигателя (АД) следует считать условие неперегрева обмотки статора при работе АД на пониженных частотах [1], т.е.

$$\frac{\Delta P_{\mathfrak{T}H}}{B(\omega_H)} = \frac{\Delta P_{\mathfrak{T}}}{B(\omega)} , \qquad (1)$$

где \triangle Р $_{\mathcal{T}_{H}}$, \triangle Р $_{\mathcal{T}_{e}}$ - греющие потери в номинальном и расчетном режимах; В (ω), В (ω) - теплоотдача в номинальном и расчетном режимах. Учитывая приближенный характер зависимостей коэффициентов внешнего подогрева [2] от скорости, можно предположить, что в расчетном режиме греющими являются все электромагнитные потери

$$\Delta P_{\mathcal{T}} \cong \Delta P_{\mathfrak{g}}. \tag{2}$$

Выражение (2) еще обосновано и потому, что АД при квазичастотном регулировании работает на скоростях, меньших 1/3