где $t_{\kappa}-t_{\kappa-1}$ = $\Delta t_{\kappa}-$ единичный шаг суммирования. Зная у $_1(t)$, находим время $t_{\rm D}$ до полного разрушения образца в долях t_1

$$y(t_1) \cdot t_p = 1; \quad t_p = \frac{1}{y(t_1)}$$
 (12)

Произвольный график $U_1(t)$ может иметь смысл непрерывно меняющегося воздействия. В этом случае при согласовании масштабов $U(\tau)$ и $U_1(t)$ задача решается аналогично из условия

$$t_{K} = t_{p}$$

$$\sum_{t_{K} = t_{1}} y(t_{K}) = 1.$$
(13)

Литература

1. С т е п а н ч у к К.Ф. Линейная коммулятивная модель разрушения и примеры ее использования при планировании и анализе испытаний образцов изоляции. — Изв. вузов. Сер. Энергетика, 1977, № 4. 2. S h i o m i H. Application of Cummulative Degradation Model to Acceleration Life Test. — IEEE Transactions on Reliability, v., R-17, № 1, March, 1968.

УДК 621.317.7 (088.8)

Е.П.Гончарик, Ю.М.Куприянович

ИЗМЕРИТЕЛЬ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ЗАЗЕМЛИТЕЛЯ

Для контроля электрических характеристик заземлителя необходимо измерять сопротивление заземляющего устройства, его потенциал и напряжение прикосновения (шага). Однако в настоящее время ни в СССР, ни за рубежом не производят серийного комплекта приборов, позволяющего измерить все эти параметры заземляющей системы. Более того, отсутствуют принципиальные разработки таких приборов.

В статье приводится схема прибора (рис. 1), который измеряет сопротивление заземлителей и их потенциал, потенциалы отдельных точек поверхности земли, напряжения прикосновения и шага в долях от полного потенциала.

Для получения значительных измерительных токов в качестве источника синусоидального напряжения обычно используется трансформатор собственных нужд или разделительный трансформатор со вторичным напряжением до 500 В. Однако не исключается применение маломощного генератора, подобного установленному в измерителе сопротивления заземления МС-08. Для обеспечения безопасности при измерениях с мощным источни-

43

ком питания напряжение на заземлитель подается кратковременно, но многократно с паузой между импульсами. Коммутация осуществляется короткозамыка гелем 2 [1]. В зависимости от сопротивления цепи 1-2-4-6-1 и необходимой величины измерительного тока выбирается напряжение источника питания и безопасное время подачи его на заземлитель.

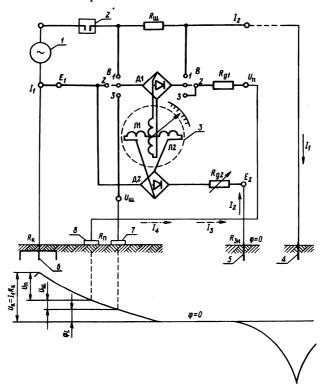


Рис. 1. Принципиальная схема прибора и схема измерений:

1 — источник питания; 2 — коммутационный аппарат — короткозамыкатель; 3 — измерительный механизм — логометр магнитоэлектрической системы; 4 — токовый электрод; 5 — потенциальный электрод (зонд); 6 — испытуемый заземлитель; 7, 8 — контактные электроды; B — переключатель измеряемой величины; D1, D2 — полупроводниковые выпрямители, собранные по схеме мостика; R111 — шунт.

При измерении сопротивления заземлителя (переключатель В в положении 1) вторая рамка логометра $\Pi 2$ с последовательно соединенным добавочным сопротивлением $R_{\Pi 2}$ находится под напряжением, равным паде-

нию напряжения на измеряемом сопротивлении, и ток, протекающий по этой рамке, равен

$$I_2 = \frac{I_1 R_K}{R_{\pi 2} + R_{\pi 2} + R_{3H}}$$
,

где I_1 — ток, стекающий с испытуемого заземлителя и создающий измеряемое электрическое поле в земле; R_{κ} — измеряемое сопротивление контура (заземлителя); $R_{\pi 2}$ — сопротивление рамки $\pi 2$; $R_{3\mu}$ — переходное сопротивление зонда (потенциального электрода); $R_{\pi 2}$ — добавочное сопротивление.

Угол поворота подвижной части логометра

$$\alpha_1 = f(\frac{I_1}{I_2}) = f(\frac{k}{R_{\kappa}}),$$

где $k = R_{\pi 2} + R_{\Xi 2} + R_{\Xi H} -$ сопротивление, при котором произведена градуировка шкалы прибора.

Чтобы при различных сопротивлениях зонда R_{3H} сопротивление k оставалось неизменным, перед каждым измерением производят регулировку $R_{\pi 2}$ до величины k, соответствующей градуировочному значению.

При измерении напряжения прикосновения (переключатель В в положении 2) рамка Л2 находится под полным напряжением контура (заземлителя) U_K , а рамка Л1 под напряжением прикосновения U_Π . По первой рамке протекает ток

$$I_3 = \frac{U_{\Pi}}{R_{\Pi 1} + R_{\Pi 2} + R_{\Pi}}$$
.

По второй

$$I_2 = \frac{U_K}{R_{\pi 2} + R_{\pi 2} + R_{3H}}$$
,

где R_{Π} — переходное сопротивление "земля—ноги"; $R_{\Pi 1}$ — добавочное сопротивление в цепи рамки $\Pi 1$.

Угол поворота подвижной части логометра

$$\alpha_2 = f(\frac{I_3}{I_2}) = f[\frac{U_{\pi}(R_{\pi 2} + R_{\pi 2} + R_{3H})}{(R_{\pi 1} + R_{\pi 2} + R_{\pi})U_{\kappa}}] = f(\frac{U_{\pi}}{U_{\kappa}} - \frac{k}{k_1 + R_{\pi}}).$$

Перед каждым измерением регулируют $R_{\rm L}^2$ до величины k, соответствующей градуировочному значению. Тогда угол отклонения стрелки прямо пропорционален напряжению прикосновения в долях от полного напряжения на контуре (заземлителе) и обратно пропорционален переходному сопротивлению "земля—ноги".

При измерении шагового напряжения (переключатель В в положении 3) рамка $\Pi 2$ находится под полным напряжением контура U_K , а рамка $\Pi 1$ под напряжением шага U_{III} .

По первой рамке протекает ток

$$I_4 = \frac{U_{III}}{R_{\pi 1} + R_{\pi 1} + R_{\pi}},$$

по второй

$$I_2 = \frac{U_K}{R_{\pi 2} + R_{\pi 2} + R_{3H}}$$
;

$$\alpha_3 = f(\frac{I_4}{I_2}) = f(\frac{U_{III}}{U_{K}} - \frac{k}{k_1 + R_{III}}).$$

Для измерения потенциалов отдельных точек поверхности земли (переключатель В в положении 3) разрывают цепь U_Π — электрод 8, а зажим прибора U_Π и E_2 перемыкают и замеры выполняют, как при определении напряжения прикосновения. При этом напряжение между электродами 5 и 7 соответствует потенциалу точки 7 относительно нулевого значения. Поскольку потенциалы достигают значительной величины, не снижая чувствительности прибора, можно взять $k_1 \gg R_\Pi$, т.е. практически исключить влияние переходного сопротивления на показания прибора.

Литература

1. Гончари к Е.П., КуприяновичЮ.М., Найфельд М.Р. Об измерениях напряжений прикосновения и шага. — Электрические станции, 1976, № 11.