$$W_{00}^{p}(p) = \frac{3,32e^{-21.8p}}{1+101p+1910p^{2}} {^{\circ}C/_{T/\Psi}}.$$
 (10)

Расчетная модель (10) получена предложенным методом из соответствующей кривой разгона, приведенной в [1] с использованием номограммы рис. 2 и 3. Отметим, что расчетная передаточная функция (10) может быть получена с применением методики [3] непосредственно из передаточной функции (9).

Анализ графиков переходных процессов, представленных на рис. 4, показывает, что предложенный метод аппроксимации позволяет определить параметры настройки ПИД-регулятора, обеспечивающие оптимальное качество регулирования при основных возмущениях, не хуже, чем традиционные методы расчета.

В результате проведенных исследований предложен новый метод антроксимации кривых разгона теплоэнергетических объектов.

Предложенный метод имеет более широкую область применения, так как не требует определения координаты точки перегиба кривой разгона объекта.

ЛИТЕРАТУРА

1. Р о т а ч В.Я. Расчет настройки промышленных систем регулирования. — М., 1961. — 344 с. 2. С т е ф а н и Е.П. Основы расчета настройки регуляторов теплоэнергетических процессов. Изд- 2-е, перераб. — М., 1972, с. 298. 3. И ц х о к и Я.С. Приближенный метод анализа переходных процессов в сложных линейных цепях. — М., 1969. — 171 с. 4. К у л а к о в Г.Т., К у л а к о в А.Т. Определение оптимальных настроек регуляторов теплоэнергетических объектов при отработке задающего воздействия. — Изв. вузов СССР. Энергетика, 1980, № 4, с. 119—124. 5. Р е m b е г t о п Т.G. She logical Control Algorithm. Part II. Control Engineering. — Iyly, 1972, р. 61—63.

УЛК 621.181

Г.И.ЖИХАР, канд.техн.наук, И.Г.БОГДАНОВИЧ (БПИ), Д.М.МАЗЕНКОВ (ВТЭЦ)

ИССЛЕДОВАНИЕ ДВУХСТУПЕНЧАТОГО СЖИГАНИЯ МАЗУТА НА ВОДОГРЕЙНОМ КОТЛЕ ПТВМ-100

Потребление сернистых мазутов на тепловых электростанциях вызывает необходимость предотвращения загрязнения воздушного бассейна вредными выбросами, снижение низкотемпературной коррозии. Одним из путей защиты воздушного бассейна является метод внутрицикловой газификации сернистых мазутов с низкотемпературной [1, 2] или высокотемпературной [3] очисткой получаемого при этом газа.

Вместе с тем значительный интерес представляет процесс газификации мазутов непосредственно в топочно-горелочных устройствах.

Преимуществами способа сжигания мазута с предварительной термоподготовкой являются сглаживание пиков тепловыделения в топке, а также существенное снижение выбросов в атмосферу окислов азота с дымовыми газами. При сжигании мазута с недостатком воздуха, содержащийся в радикалах азот топлива выделяется в молекулярном виде, тогда как при сжигании мазута с избытком воздуха азот выделяется в виде окислов.

Предлагаемая конструкция газомазутной горелки изображена на рис. 1. Топливо подают в газомазутную горелку либо через мазутную форсунку 13, либо через газоподводящий узел 2. Часть воздуха, недостаточная для полного сжигания топлива, направляется в воздухоподводящую трубу 1 и, закручиваясь завихрителем 12, подается в полость горелочной амбразуры 5. Благодаря турбулизирующей шайбе 10 в кольцевом зазоре 11 образуются обратные

токи, эжектирующие к корню факела продукты сгорания, что снижает температуру факела и препятствует образованию окислов азота. На выходе из горелочной амбразуры в поток подается дополнительное количество воздуха из канала 9, необходимое для полного сжигания топлива. Газы

мазут 13 12 11 10 9 Газы рециркуляции

Воздух

Рис. 1. Газомазутная горелка газификационного типа:

1 — воздухоподводящая труба; 2 — газоподводящий узел; 3 — кольцевой канал газов рециркуляции; 4 — обечайка вторичного воздуха; 5 — камера горения; 6 — короб газов рециркуляции; 7, 8, 12 — завихрители; 9 — канал вторичного воздуха; 10 — турбулизирующая шайба; 11 — кольцевой зазор; 13 — мазутная форсунка.

рециркуляции, поступающие из кольцевого канала 3, также снижают температурный уровень в топочном пространстве, препятствуя образованию окислов азота.

Сжигание мазута в водогрейных котлах связано с некоторыми трудностями: обеспечение полноты сгорания мазута в пределах ограниченного объема рабочего пространства котла требует высокого качества его диспергирования при подаче в котел и повышенных коэффициентов избытка воздуха.

В связи с этим ставилась задача разработать горелочное устройство для водогрейного котла с предварительной термоподготовкой мазута, которое позволяет газифицировать мазут за пределами топочного пространства котла.

Рабочие чертежи горелочного устройства разработаны в соответствии с [4].

Учитывая низкий напор дутьевого воздуха, горелки выполнены с аксиальным лопаточным аппаратом, имеющим небольшое сопротивление и занимающим меньше места на фронте котла. Требовалось также организовать режим двухступенчатого сжигания при минимальной реконструкции действующего оборудования. Аксиальный лопаточный завихритель изготовлен с регулируемым углом установки лопаток, что дает возможность изменять закрутку первичного воздуха. Кроме того, аксиальный аппарат предотвратил переделки существующего тракта дутьевого воздуха и вписался в габаритные размеры заводских горелок.

Камера газификации выполнена цельной из огнеупорного материала и имеет цилиндрическую форму.

Подвод вторичного воздуха осуществляется тангенциально. Закрутка периферийного потока воздуха способствует лучшему перемешиванию его с осевым потоком, что обеспечивает выгорание топлива на двух стадиях. Направления крутки первичного и вторичного воздуха совпадают. Вращение газовых потоков горелочных устройств осуществлено таким образом, что происходит затягивание продуктов сгорания из верхней части топки вниз, и тем самым улучшается выгорание топлива на второй стадии горения.

При организации факельного процесса газификации мазута использовались методы подготовки к сжиганию жидкого топлива, обычные для условий водогрейного котла. Распыливание подогретого до 100—120 °С мазута в турбулентном потоке воздуха, который подается в газификационную камеру через аксиальный регистр, осуществлялось механической форсункой. Применение такой схемы раздельной подачи газифицируемого топлива и воздуха обеспечивает высокую интенсивность их последующего смещения, которая реализуется в реакционном объеме вихревой газификационной камеры описаннои конструкции.

Для промышленного опробования горелочных устройств газификационного типа в период капитального ремонта водогрейного котла ПТВМ-100 Витебской ТЭЦ четыре заводские горелки были заменены новыми горелочными устройствами.

Во время испытаний котла сжигался мазут марки M-100 со следующими характеристиками: $W^P = 0.8 \,\%; \, S^P = 2.1 \,\%; \, Q_H^P = 40517 \, кДж/кг.$

Было установлено, что водогрейный котел ПТВМ-100 (Ст.1) устойчиво работает (на четырех газификационных горелках) при отсутствии химнедожога в диапазоне нагрузок 15—35 МВт.

Регулирование нагрузки производилось качественно, путем изменения давления мазута перед горелками. При изменении нагрузки в диапазоне 23—35 МВт расход мазута возрастал от 0,61 до 0,91 кг/с.

Коэффициент избытка воздуха в горелочных устройствах изменялся в пределах 1,02-1,04. Доля первичного воздуха составляла $\alpha_r^I=0,85-0,92$.

С увеличением нагрузки с 23 до 35 МВт потери тепла с уходящими газами изменялись от 4,98 до 5,58 %, потери от химического и механического недожога равны нулю. Коэффициент полезного действия котла "брутто" изменялся с 92,42 до 92,82 %, что примерно на 0,4 % больше, чем у котла с заводскими горелками.

На рис. 2 показана зависимость концентрации окислов азота в уходящих газах от нагрузки котла. Как видно из рисунка, с увеличением нагрузки выбросы окислов азота возрастают с $105 \,\mathrm{mr/m^3}$ при нагрузке 23 МВт до $162 \,\mathrm{mr/m^3}$ при нагрузке 35 МВт.

При установке газификационных горелок концентрация окислов азота снизилась в среднем в 2,1 раза.

Установка новых горелочных устройств привела к выравниванию падающих тепловых потоков по высоте топки. На уровне оси горелочных устройств максимальные падающие тепловые потоки снизились с 153 до 104 кВт/м 2 , или в 1,46 раза, на выходе из топки увеличились с 71 до 95 кВт/м 2 , или в 1,34 раза. Это связано с изменением светимости факела и, как следствие, соотношения между радиационной и конвективной составляющей тепловосприятия поверхностей нагрева (рис. 3).

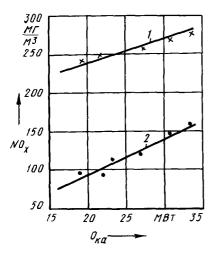


Рис. 2. Зависимость концентрации окиспов азота в уходящих газах от нагрузки котла:

1 — с заводскими горелками; 2 — с газификационными горелками.

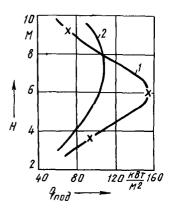


Рис. 3. Распределение падающих тепловых потоков по высоте топки котла: 1 — с заводскими горелками; 2 — с газификационными горелками.

Коррозионная агрессивность продуктов сгорания (КАПС) при работе котла на заводских горелках составила в среднем 9,6 мг/ (м²- с), что в 1,57 раза выше по сравнению с новыми горелками, где указанное значение равно 6,1 мг/ (м²- с).

На основании проведенных испытаний водогрейного котла с новыми горелочными устройствами получен ряд результатов.

Экономичность водогрейного котла увеличилась на 0,4 %.

Содержание окислов азота в уходящих газах снизилась в среднем в 2,1 раза.

Повысилась надежность работы поверхностей нагрева за счет более равномерного распределения падающих тепловых потоков. Значение максимальных падающих тепловых потоков на уровне оси горелочных устройств снизилось в 1,46 раза.

Коррозионная агрессивность продуктов сгорания снизилась в 1,57 раза.

Тепловая производительность котла при работе четырех новых горелок составила 35 МВт против 25 МВт (при работе на четырех заводских горелках).

ЛИТЕРАТУРА

1. Христианович С.А., Масленников В.М., Выскубенко Ю.А. Защита атмосферы от вредных выбросов тепловых электростанций методом внутрицикловой газификации высокосернистых мазутов. — Теплоэнергетика, 1974, № 11, с. 52—55. 2. New process gasifiel highsulfur resid. — Elictrical World, 1973, N 3, р. 30—32. 3. Андрющенко о А.И., Альтшулер В.С., Попов А.И. Эффективность использования высокосернистых мазутов путем их предварительной газификации и высокотемпературной очистки на ТЭЦ. — Изв. вузов. Энергетика, 1971, № 3, с. 46—51. 4. А.с. 964350 (СССР). Газомазутная горелка/Г.И.Жихар, В.П.Крупнов, Н.Б.Карницкий. — Опубл. в Б.И., 1982, № 377.

УДК 66.047

В.П.МИХАЛЕВ (БПИ)

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ КИНЕТИКИ СУШКИ ФАРФОРА В ФОРМАХ ИЗ МЕТАЛЛИЧЕСКОГО ПОРОШКА

Использование пористой металлической формы (пористость 30%) из сферического бронзового порошка позволило перейти на высокотемпературные режимы сушки фарфоровых изделий. Качество сушки (равномерная усадка материала, устойчивость к трещинообразованию и короблению) находится в прямой зависимости от распределения по сечению температуры и влагосодержания высушиваемых изделий. Следовательно, кинетика полей температуры и влагосодержания, определяемая механизмом переноса влаги и тепла, является решающим фактором для характеристики оптимальных режимов сушки и прогнозирования качества готовых изделий. Сушка фарфоровых изделий в порошковых металлических формах может осуществляться различными способами. Тепловой поток со стороны формы подводится к изделию кондуктивно. Со стороны свободной поверхности изделия он может подводиться излучением, конвекцией либо комбинированно.

В результате экспериментальных исследований, проведенных автором, были получены кривые кинетики сушки фарфоровых изделий в формах из металлического порошка БрОФ-10-1 при различных способах энергоподвода.

На рис. 1 представлены характерные кривые кинетики инфракрасной сушки фарфорового полуфабриката на пористой металлической форме в среде с температурой 200 °C. Толщина слоя фарфора 3,5 мм, толщина формы 3 мм. Кривая сушки имеет ярко выраженный период прогрева, который составляет до 20 % продолжительности первой сушки (подвялки) изделий при данных условиях.

Влагосодержание фарфора $\overline{U}_{\text{отд}}$, при котором усадка достигает значения, необходимого для свободного отделения изделия от формы, находится в пределах 0,205—0,210 кг/кг. Первая критическая влажность $\overline{U}_{\text{кр.1}}$, соответствующая окончанию усадки изделия, составляет 0,180—0,185 кг/кг. На этом же рисунке представлены температурные кривые, отражающие изменение темпера-