жаростойкость сталел с хромовыми и хромкремниевыми лиффурионными покрытиями

Л.Г.Ворошнин, Г.В.Борисенок, Ф.С.Новик, Ф.Г.Ловшенко

Роль высоких температур в современной технике непрерывно возристает. Это в свою очередь требует непрерывного увеличения объеме
производства дорогостоящих жаропрочных сталей и сплавов. Есла изделия, работающие при высоких температурах не несут значительных нагрузок, представляется возможным, в ряде случаев, заменить дорогостожие жаропрочные стали обычными конструкционными, приняв предварительно соответствующие меры защиты их от окиоления. Указанными причинами и объясняется тот повышенный интерес, который появляется в
настоящее время к разработке и исследованию различного роде жароотойких покрытий, в том числе и диффузионных.

Ниже приводятся результаты исследования влияния диффузионного кромирования и хромосилицирования на жаростойность углеродистых сталей (ОВКП, сталь 45). Исследования выполнены с использованием математических методов планирования экспериментов.

Хромирование осуществлялось из смеси порошков феррохрома (мерни X75), окиси элюминия и хлористого аммония. В начестве незавионмых переменных выбраны: температура хромирования, $^{O}C(X_1)$, количество феррохрома в насыщающей смеси, $^{S}C(X_2)$, количество хлористого оммония, $^{S}C(X_3)$ и время насыщения, часы (X_4) . Окись алюминия добавлялась в насыщающую смесь до 100%.

" Параметром онтимизации являлся весовой показатель скорости гаповой коррозии, который рассчитывался по формуле

$$\kappa_{\theta ec}^+ = \frac{g - g_0}{S_n t}$$
,

где $\kappa_{\text{бес}}^{+}$ - весовой показатель газовой коррозии, г/м 2 .ч.; g_{o} - начальный вес образца, г; g - вес образца с продуктами коррозии после испытаний, г; δ_{o} - поверхность образца, м 2 ; t - время испытаныя, ч.

Образцы испытывались на жаростойность в муфельных лечах при темпоратуре 1000°С в течение 16 часов, Каждый образец помещался в индивидуальный, произвенный до постоянного веса фарфоровый тигель. Взведи вание образцов производилось вместе с тиглем.

План экспериментов (дробная реплака 241 с определяющих монт-

План виспериментов (дробная реплика 2^{4-1} с определивами контрастом $I = -X_1X_2X_4$), условия их проведения и получение результаты приведения в таба. 1. Каждый из фентеров варьировался на 2-х уровнях +1 и -1, вамодированных в табл. 1 внаками 6 + 10 и 10 - 10 .

Таблица I Хромирование на порошков. Матрица планирования и ребультаты опытов

Фантор	u		t,	X75.	NH ₄ Cl,	T .	CHUDOCTH	понавател газовой г/м².ч.
Ксд	-	10	XI	X	X ₃	X ₄	1 2	
I		2	3	4	5	6	7	
ур онень Ос нови р	(())		1050	70	2	6		
Интерва; варьиро- вания (100	15	2	2	19490 1940	Ž.
Веркима урожень	(+1)		1150	85	4	8		Cana
Hannah Ypobens	(-I)		950	55	0	4	1	
Onnth	İ	+ .	**	-	ر المالية في المالية ا - المالية الم		85,0	71,2
	2	+	+	-	• :	+	14,4	57,5
	3	+	_	+		+	92,5	58,8
•	4	+	+	+		-	6,1	33,2
	5	+	, - ,	-	4 6 7		58+0	58,5

I		Ż	3	4	5	ö	7	
AL ALL PLANTS OF PROPERTY AND A PROPERTY OF THE PROPERTY OF TH	ó	+	+	••	+	+	25,0	3,1
	7	+		+	+	+	37,3	II,4
	Ĕ	+	+	. +	+	~	3,5	2,0
он. уровень	9	,	0	0	<u>с</u>	0	I,5	1,3
	10(I)	+	*	· .		,-a	94,4	55,6
	II(4)	÷	+	+		-	7,9	40,8
	12(7)	+	-	+	+	*	29,6	10,5
r, yposent	13(9)		0	0	C	0	I,I	0,8

Полученные результаты позволили расочитать линейные модели $y = b_0 + \sum_{i=1}^{n} b_i x_i$, их коэффициенты $\left(b_i = \frac{x_i y_i}{N}\right)$ и доверительные интервалы коэффициентов реграсоми (тасл.2).

Для стели 45 линейная модель адекватно представляет разультати опытов при 5%-мом уровне значимости ($T_{4;4;0,05} = 6,39$; $F_{4;4} = 4,11$).

Водичина и заак козффициентов реграссии линейной модели позволиот оценить влияние исследованных факторов (в пределах их изменегия) на скорость окисления: жеростойность хромированной стали 45
манболее сильно вависит от количества вводимого в омесь хлористого
вмония и температуры процесса, нескольно в меньшей мере от количества в омеси феррохрома и практически на заянсит от времени насышения. Причем для уменьшения скорости окисления необходимо повышатьот основного уровии температуру процесса и увеличивать содержение
в несмающей смеси феррохроме и хлеристого вымония.

Для отвля ОВКП линейная модель:

$$y = 40.2 - 28.0X_1 - 5.4X_2 - 9.3X_3$$

наохо описывает локальный учесток повержности отклина (модель неыденватна). Неожиденно сильным оказался эффект взаимедействия

Результаты стагистической обработки экспериментальных

Данных

S ² [y] S ² F ^{3HCII}	IB,88 453,7 24,0	8,4 4,II
Sa	45	197
[6],	18,88	40,95
Линейная модель	40.2 -28.0 -5.4 -9.3 2.1 ± 3.53 $J=40.2-28.0X_{1}-5.4X_{2}-9.3X_{3}$	37,0 -13,0 -10,6 -18,2 -4,26 <u>+</u> 5,22 J=37,0-13,0X _I -10,6X ₂ -18,2X ₃ 40,95 I68,4 4,II
Δδέ	±3,53	±5,22
B.	2,1	4,26
B3	5,6	-18,2
. ^B 2	4,6-	9 . 01-
$\mathbf{I}_{\mathbf{f}}$	-28,0	-13,0
O _E	40,2	37,0
Mapka BO BI B2 B3 B $_{m{4}}$ $\Delta m{ heta}_{c}$	08КП	45

 $\chi_1 \chi_2 \chi_3 = 11,9$). Значивым оказался и эффект ваемиоденствин $\chi_1 \chi_3 = 4,5$). Несколько лучие поверхность отклика списывается веполной квалратичной моделью:

$$y = 40.2 - 28.0X_{I} - 5.4X_{2} - 9.3X_{3} - II.9X_{2}X_{3} + 4.5X_{I}X_{3}$$

$$(F_{2;4}^{9KGR} = I4.3; F_{2;4;0,I}^{TadA} = I8;0).$$

Следующим этелом планирования являлось крутое восхождение к оттемуму во градиенту линейной модели. Несмотря на то, что линейная к мель для стали ОВКИ неадекватна, было решено все же реализовать крутое восхождение по градиенту линейной модели, так нак движение по градиенту нелинейной модели практически трудво осуществимо. Условия проведения экспериментов и полученные результаты приведены в табл. 3.

Таблица 3 Хромирование. Крутое восхождение по градиенту линейных моделей

Фак торы	t, o _C	X75, %	NH ₄ Cl,	Ť, ч.	Весовой пока- затель ско- рости газовой коррозии, г/м².ч.
Код	Χ _I	X ₂	X ₃	X,	y _I
I	2	3	4	5	6 *

Сталь ОВКЛ

$$\theta_i$$
 -28,0 -5,4 -9,3 +2,1 $\theta_i \times J$ -2800 -81,0 -18,6 4,2 Bar 50 1,5 0,3 0

I		2	3	4	-5	6		
инсленный о	пыт I	1100	71,5	2,3	6	-		
Ревливован.	-"- 2	1150	73,0	2,6	6	2,56		
_P	-"- 3	1500	74,5	2,9	6	2,25		
мисленный	-n- 4	1200	76,0	3,2	6	-		
реаливован.	_"- 5	1200	77,5	3,5	6	I,37		
	-"- 6	200يو	79,0	3,8	6	1,19		
_11	-"- 7	1200	80,5	4,I	6	2,75		
	-"- 8	1500	82,0	4,4	6	16,3		
<u>Сталь 45</u>								
81 .		-13,0	-10,6	-18,2	-4,26			
$B_i \times \mathcal{I}$		-1300	- I59	-36,4	-8,52			

$\beta_i \times J$	-13,0 -1300	-10,6 -159	-18,2 -36,4	-4,26 -8,52	
шаг	25	3,0	0,7	-0,167	
І тыю, невоєнкає І	1075	73	2,7	6,167	1,25
-""- 2	1100	76	3,4	6,334	2,12
	1125	79	4.I	6,501	3,0
	1150	18	4,8	6,668	4,70
имоленный -"- 5	1175	84	4,8	6,834	-
Реализован"- 6	1500	87	4,8	7,0	5,63

Вечений результат для стали 08КП ($K_{BeC}^{\dagger}=1.19$) был достигнут в 6 очите, а для стали 45 ($K_{BeC}^{\dagger}=1.25$) — в 5 опыте крутого восхождения. Так нак жаростойность сталей 08КП и 45, хромированных по лучшим из отое тованных режимам, близка к жаростойности специельных сталей 18ПОТ ($E^{IG}_{O}=0.95$), X25Т ($K_{BeC}^{IG}=1.12$) и в 60 раз превосходит оказиветойность везащищенных сталей, на первом этапе исследований ответойние эксперименты по отысканию оптимальных режимов хромировато решено было не проводить.

йсследование кинетики окисления и термостойкости диффузионных

поирыты: выполнено на стелях, хромировенных по оптинслыние режимем: овки — $t = 1200^{\circ}$ С; 3.75 = 79%; NH_{ϕ} Cl = 3.8%; $Al_{2}O_{3} = 17.2\%$; t = 6 ч.

 $u_5 = t = 1075^{\circ}C_1 \times 775 = 73\%_1 \quad NH_aCl = 2.7\%_1$

PMC.I

Parc.2

Жаростойкость исследовалась при температурах 800, 900 и 1000°С в течение 45 часов. Вавемивания проводилось через уаждые 15 часов. Термостойкость исследовальсь при нагреве до тех же температур. Продолжительность одного цикла испытаний составляна 10 ммн. (5 мин. негрев-

- 5 мян. охлаждение). Полученные результаты приведены не рис. I и 2.

Кинетика окисления хромированных оталей удовлетворительно подчикнется параболическому временному закону. Болышей жеростойкостью обледаят кербидные диффузисиные покрытия (стали 45 и уз). Покрытии на с. —
твердого раствора по жа—
ростойкости уступают карбидным, особенно при вы—
соких температурах окисления (1000 ос и выше).

Хромовме покрытия не всех иоследованных сталях обладают оравнительне высокой термостойкоотыр: не стели ОВКП при воем исоледовенных режимах тер пинанровения они выдерживают без разрушения более 200 теплосмен. На стали 45 — при 800°С более 200 теплосмен, а при 900 и 1000°С — 100 и 65 теплосмен соответственно. С повышением содержания углерода в стали термостойность нарбидных покрытий увеличивается. Так, на стали УВ нетастрофическое окисление при температуре 1000°С нечинается лишь после 115 циклов нагреве и охнаждения. При более нижких температурах термоциклирования диффузионное кромовое покрытие на этой стали после 200 теплосмен не раврушелось.

По аналогичной методине проводилось исоледование жаростойности хромосилицированных сталей ОВКП и 45. С этой целью была выбрэна и реаливована I/4 реплика типа 2^{5-2} с определяющим контрастом $1 = X_T X_2 X_3 = X_3 X_L X_4 = X_T X_2 X_3 X_L$ (табл.4).

Т в блица 4

Хромосилицирование. Метрица планирования и результаты экспериментов

Фенторы		t,	Si,	X75,	nh₄ci, ≉	Т, ч.	тель с	и показа- корости и корро- /м ² .ч.
Код	X _o	ıx	X ₂	X ₅	X ₄	X ₅		y
I	2	3	4	5	6	7	8	
уровень(О)		1000	5	55	3	6		
Интервад варьирования ()		50	2	15	2	2	O SKII	£
Верхний уровень (+1)	*****	1050	7	70	5	8	Crais	Crams 4
нижний уровень (-I)		950	3	40	I	4		9

I		2	3	4	5	6	7	8	
Опыты	I	t	**	-	-		-	26,15	17,1
	2	+	+	+		***	-	16,15	4,3
	3	+	-	***	+	+		19,23	6,5
	4	+	+		+	-	+	6,54	1,0
	5	Ť.	-	+	+	***	+	4,73	3,2
:	6	+	+	-	-	+	+	1,77	0,9
	7	+	-	+	-	+	+	1,73	I,I
	8	+	+	+	+	+	•	1,92	1,5
Осн. уровенъ	9		0	0	0	Ö	0	1,81	1,5
	IO(I)	ŧ	-	*	~	-	_		20,0
	11(7)	+	-	+	-	+	+	I,15	0,7
	12(4)	+	+	-	+	_	+	9,88	0,7
Осн. уровень	13(9)		0	0	0	0	0	1,62	1,0

Ревультаты статистической обработки полученных данных приведены в табл. 5. Испытания на жаростойкость проводились при 1000° C в течение 26 часов.

Табличные эначения F — критерия (45 — $F_{3,4;0,05}^{\text{табл.}} = 6,59;$ 08КП — $F_{2,3;0,05}^{\text{табл.}} = 9,55$) при 5%-ном уровне эначимости меньше экспериментальных, поэтому гипотеве об эденватности линейных моделей не отвергается.

Было принято решение реализовать прутое воскождение по градиен-

Полученные ревультеты повволяют утверждеть, что оптимельными режимеми хромосилицирования являются следующие:

OHRII -
$$t = 1040^{\circ}\text{C}$$
, $Si = 6.7\%$; $X75 = 61\%$, $NH_4\text{Cl} = 4.8\%$; $Al_2O_3 = 27.5\%$; $T = 9$ q. $45 - t = 1020^{\circ}\text{C}$; $Si = 5.5\%$; $X75 = 58\%$, $NH_4\text{Cl} = 3.6\%$; $Al_2O_3 = 32.9\%$; $T = 6.9$ q.

Результаты статистической обработки экспериментальных

дэнных

KNHETHKA OKHCAEHHR XPUMOCHAHUMPOBAHHЫX

PMC.3

TEMMOCTORNOCTO XPOMOCHAMBUPUBAHARIX CTAARA TEMMORATURA MENDERANG M

Puc.4

Исследование кинетиги окисления хромооилицированных сталей и
термостойности дифрузионных покрытий проводилось по метслике, описанной для хромированных сталей. Результаты
виспериментов приведены
на рис.3 и 4.

Как и в случае хромирования кинетика окисления хромиремниевых
карбидных покрытий удовлетворительно описывается параболический
закон окисления хромосилицированной стали
ОВКП соблюдается лишь
при сравнительно низких
температурах окисления
(800°C).

Термостойкость хромкремниевых диффувионных покрытий на сталях 45 и J8 несколько выше, чем хромовых, а на стали ОВКП — ниже.

Таблица 6

Хромосилицирование, крутое восхождение по градиенту линейных моделей

Фэкторы	t,	Si,	X75,	NH4Cl,	T ,	К ⁺ вес.,г/м ² .ч.
Код	XI	Χ ₂	Х3	¥4	X ₅	У
		Cra.	ль ОВКП			
						•
$oldsymbol{eta_i}_{oldsymbol{eta_i}} imes oldsymbol{\mathcal{J}}$	-3,18 -159,0		-1,67 -25,05	•	•	
Паг	20	0,85	3,0		-	•
Реализован. опыт I	1020	5,85	58	3,9	7,5	1,3
" 2	1040	6,7	6 I	4,8	9,0	0,85
-n- 3	1060	7,55	54	5,4	9,0	4,2
Мысленяни — п_ 4	1080	8,4	67	5,4	9,0	•
Реализован 5	1100	9,25	70	5,4	9,0	6,3
Иыслепный -"- 6	1120	10,1	73	5,4	9,0	•
		Cra.	ль 45			
$oldsymbol{ heta_i}$	-2,53	-1,93	-I,4	-I,95	-2,53	
$\boldsymbol{\theta_i} \times \mathcal{I}$	-126,5	-3,86	-21,0	-3,90	-5,06	
Var	20	0,5	3,0	0,6	0,9	
Реализован. опыт I	1020	5 ,5	58	3,6	6,9	0,77
-n- 2	1040	6,0	61	4,2	7,8	18,0
3 سااس عااس	1060	6,5	64	4,8	8,7	2,3
Мысленный -"- 4	1080	7,0	67	5,4	9,6	-
Реализован"- 5	1100	7,5	70	5,4	9,6	2,1
Инсленный -"- 6	1120	8,0	73	5,4	9,6	
Реализован"- 7	1140	8,5	76	5,4	9,6	2,9

Выводы

- I. Как кромирование, тан и хромооилицирование являются надежной ващитой углеродистых сталей от ониоления до темперетур порядка $900^{0}\mathrm{O}$.
- 2. По оналиностойности в исследованном интервале температур хромированные и хромосилицировенные углеродистие стали прантически не уступают специальным нержавающим сталям типа XI8H9T и X25T.
- 3. Кромирование и хромосилицирование следует рассматривать кан два разноценных процесса повишения жаростойности углеродистых сталей, Канмия-либо опецифическими премирествами кремиремниевые двффувночные покрытия перед хромовыми не обледают.