Н.П. ВОРОНОВА, С.А. ДРОЗД, А.И. КОЗЛОВ, канд. техн. наук (БПИ)

УЧЕТ ОКАЛИНООБРАЗОВАНИЯ ПРИ РАСЧЕТЕ ТЕМПЕРАТУРНЫХ ПОЛЕЙ В НАГРЕВАЕМЫХ ТЕЛАХ

Известно, что нагрев метапла при высоких температурах сопровождается процессом окисления. Реакция окисления сталей и непрерывно растущий слой низкотеплопроводной окалины препятствуют передаче теплоты к металлу. Это нарушает стабильность параметров внешнего теплообмена, приводит к потерям метапла, тепловой энергии и ухудшению свойств получаемых изделий. Учет окалинообразования позволяет регулировать режим нагрева тел, оптимизировать материало- и энергозатраты на него, что осуществимо благодаря математической модели.

Математическая модель процесса нагрева способствует точной оценке параметров высокотемпературного окисления металлов без проведения сложных экспериментальных замеров, а также определению температурных полей в нагреваемых телах с учетом влияния окалинообразования.

Для решения поставленной задачи исследовался процесс нагрева заготовок цилиндрической формы диаметром 0,05 м из стали марки 45. Режим нагрева рассчитывался в диапазоне температур 1173...1473 К, т. е. с момента появления окалины на поверхности образца. В связи с этим тело рассматривалось не как сплошное, а как двухслойное. Необходимо было найти приближенное решение линейного параболического уравнения вида [1]

$$c(x, t) \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} (K(x, t) \frac{\partial u}{\partial x}) + f(x, t); \ 0 < x < l; \ t_0 < t \le T_0$$

с граничными условиями:
$$u\left(0,t\right)=\varphi(t)$$
; $-\mathrm{K}\left(l,t\right)\frac{\partial u\left(l,t\right)}{\partial x}=\beta_{i}\left(t\right)u\left(l,t\right)$ +

+ $\mu_{i}(t)$ и начальным условием $u(x, 0) = u_{0}(x)$.

Предположим, что
$$c(x,t) = \frac{1}{a(t)}$$
, $K(x,t) = x$, $f(x,t) = 0$, $\varphi(t) = 300 t + 1173$, $\beta(t) = \frac{a(t)}{\lambda(t)}$, $\mu(t) = -\frac{a(t)}{\lambda(t)}$ 1473, $\mu(t) = 1173$.

Функции a(t), $\alpha(t)$, $\lambda(t)$ представляют собой соответственно коэффициенты температуропроводности, теплоотдачи и теплопроводности и получены из [2] с помощью линейной аппроксимации табличных значений: $a(t) = 10^{-5} t + 10^{-5} t$

$$+10^{-2}$$
; $\alpha(t)=\frac{5}{23}t-2$; $\lambda(t)=10^{-2}t+13,1$. Функция u соответствует режи-

му нагрева печи, $\it l$ принималось с учетом увеличения толщины слоя окалины [2, 3] .

Для нахождения решения поставленной задачи применялся метод сеток со скоростью сходимости приближенного решения к точному, не превышающей

Зависимость температуры от времени при нагреве цилиндрической заготовки из стали 45 диаметром 100 мм

Расстояние от центра заготовки x,м	Время нагрева, с					
	0	0,0103	0,0206	0,0309	0,0412	0,0515
0	1173	1173	1173	1173	1173	1173
0,1	1202	1355	1455	1436	1458	1460
0,3	1262	1381	1421	1444	1461	1464
0,4	1292	1394	1428	1448	1463	1465
0,5	1322	1407	1435	1452	1464	1466
0,6	1352	1420	1443	1456	1466	1468
0,7	1382	1433	1450	1460	1468	1470
8,0	1412	1446	1458	1464	1469	1471
0,9	1442	1459	1465	1468	1471	1472
1,0	1472	1472	1472	1472	1472	1473

 $0(h^2 + \tau)$ [4]. Рассматривалась консервативная четырехточечная разностная схема с опережением, построенная интегро-интерполяционным методом. Разностная схема строилась на равномерной прямоугольной сетке, а для решения разностных уравнений использовался алгоритм одномерной прогонки. Результаты вычислений представлены в табл. 1.

Предложен метод расчета температурных полей цилиндрических заготовок с учетом того, что при нагреве их поверхность покрывается окалиной. Уточнение температур по диаметру образца позволяет оптимизировать режим его нагрева. Полученные результаты дают возможность построить номограммы, с помощью которых можно определить температуру в любой точке образца, без экспериментальных замеров.

ЛИТЕРАТУРА

1. Лыков А.В. Теория теплопроводности. — М.: Энергетика, 1976. — 510 с. 2. Северденко В.П., Макушок Е.М., Ровин А.Н. Окалина при горячей обработке металлов давлением. — М.: Металлургия, 1977. — 208 с. 3. Темник В.Г., Темник А.В. Зависимость теплофизических свойств углеродистой стали от температуры // Изв. вузов СССР. Энергетика. — 1977. — № 12. — С. 119—121.

УДК 536.021

В.И. ТИМОШПОЛЬСКИЙ, Э.А. ГУРВИЧ, канд-ты техн. наук, И.А. ТРУСОВА (БПИ)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОВОГО СОСТОЯНИЯ СЛИТКА В СОВМЕЩЕННОМ ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ ЗАТВЕРДЕВАНИЕ В ИЗЛОЖНИЦЕ — НАГРЕВ

Важнейшая задача современной металлургии — создание высокоэффективных, энергосберегающих технологий получения проката повышенного качества. Существенная роль в ее решении отводится совершенствованию технологи-