
Мощность источника света постоянна, что обеспечивает контроль целостности ОКС при сохранении энергетического баланса КС, а длины волн "0" и "1" выбраны приходящимися на противоположные ветви спектральной характеристики ПФ (рис.2).

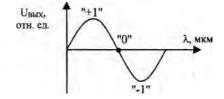


Рис.1. Диаграмма формирования

Рис.2. Спектральная характеристика парафазного фотоприемника

биполярного импульсного кода

Выделение фотоприемником излучения разных длин волн в виде разнополярных электрических импульсов обеспечивает высокую надежность различения "нулей" и "единиц". При этом для формирования "нулей" и "единиц" используется два из трех состояний ПФ (положительный и отрицательный экстремум спектральной характеристики). Это обеспечивает избыточность предложенной системы кодирования и построения КС и повышение информационной емкости КС:

$$C = \Delta F \cdot \log_2 M$$

где М- количество различимых состояний информационного параметра.

При желании сохранить как можно больше положительных свойств предлагаемого КС и одновременно сужения частотного спектра передаваемого сигнала предлагается формирование кода 2В1Q при совместном использовании трех состояний ПФ, подключенного к элементарной структурной ячейке "удвоенной" памяти, а также принципов четырехуровневых кодов [3].

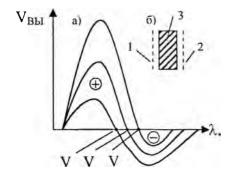
Литература

- 1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы. СПб: Издательство "Питер", 1999. 672с.
- 2. Яржембицкий В.Б., Свистун А.И., Яржембицкая Н.В. Структурные особенности и характеристики фотоэлектрических нуль-детекторов./ Международная научно-практическая конференция "Наука и практика. Диалоги нового века", Набережные Челны, 2003, с. 123-125.
 - 3. Jim Heid, Bill Snyder. Processors Leap Ahead. PC World. 1998, № 1, p. 58-63.

ОПТОЭЛЕКТРОННЫЙ МЕТОД ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

А.С. Бакун, А.И. Свистун

Научный руководитель – д.ф.-м.н., профессор **В.Б. Яржембицкий** Белорусский национальный технический университет


Широко распространены пирометрические методы (ПМ) измерения температуры (T^0), в которых выходной сигнал фотоприемника (Φ П) соотносится с определенной энергией (температурой) излучающего тела. Достоинство метода — его бесконтактность и широкий диапазон T^0 . Недостатки ПМ обнаруживаются на аппаратном уровне: для реализации автоматического измерения T^0 путем уравновешивания необходимы два оптических измерительных канала (в некоторых модификациях — два идентичных по параметрам и характеристикам Φ П). Особенность любого ПМ — обработка сигналов двух излучателей: 1) от излучающего объекта (ИО), 2) от эталонного источника (ЭИ). В модификациях и с одним, и с двумя Φ П имеются свои недостатки: в одном случае требуются вспомогательные электронные узлы для сравнения сигналов, в другом — тщательный подбор идентичных по свойствам Φ П. Это влечет за собой усложнение способа и устройства, повышение их стоимости, ухудшение

временных характеристик и точности измерения. В разработанном оптоэлектронном методе измерения T^0 используется предложенный нами ранее парафазный фотоприемник (ПФ), сравнивающий излучения ЭИ и ИО на уровне физической и схемотехнической организации самого фотодатчика. В основу измерений положена линейная зависимость фотоэдс $\Pi\Phi$ от температуры в соответствии с выражением:

$$U_{\text{\tiny gaix}} = \frac{kT}{e} \ln \frac{i_{\Phi}}{i_{S}}$$

где к — постоянная Больцмана, T — абсолютная температура, е — заряд электрона, i_{Φ} — фототок, i_{S} — ток насыщения одного из двух барьеров $\Pi\Phi$.

Линейная зависимость $U_{\text{вых}}(T)$ обеспечивается превосходством $i_{\Phi}>> i_{\text{S}}$. С использованием ПФ возможны и дистанционная, и контактная модификации метода. На рис.1а, б изображены конструкция и спектральные характеристики ПФ при разных напряжениях. Двухбарьерная конструкция ПФ обеспечивает прием сигналов как ЭИ, так и ИО одним и тем же фоточувствительным элементом. Конструкция фототоков 2-х барьеров сопровождается компенсацией измерительного и эталонного сигналов (нулевым фотоответом) и управляется напряжением (рис.1,б). Таким образом, уравновешивание происходит за счет внутренних фотоэлектрических процессов и не требует использование вторичных электронных преобразователей. На рис.2. приведена градуировочная кривая $T^0(V)$ для кремниевого ПФ, из которой следует, что диапазон измерения T^0 в данном случае заключен между 470^0C-950^0C .

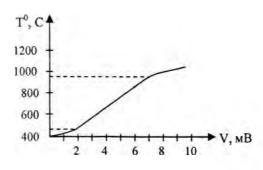


Рис.1. Спектр фотоэдс (а) и конструкция $\Pi\Phi$ (б): Рис.2. Градуировочная кривая $T^0(V)$ $V_1>V_2>V_3$; 1,2 — барьеры $\Pi\Phi$, 3 — база $\Pi\Phi$

Точность измерения составила $\pm 0.5^{\circ}$ C, если уровень стабилизации V составил $\pm 0.2\%$. Изменение диапазона температур данным методом возможно путем подбора ширины запрещенной зоны полупроводника.

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ СЕРТИФИКАЦИОННЫХ ИСПЫТАНИЙ НЕСМЕННЫХ ИСТОЧНИКОВ СВЕТА

О.А. Кузьмина, М.В. Осадник

Научный руководитель — д.ф.-м.н., доцент *С.П. Сернов* Белорусский национальный технический университет

В настоящее время в светотехнике в качестве альтернативных источников света широко используются светодиоды (СД). Наиболее динамично развивающейся областью их применения является автомобильная светотехника, поскольку твердотельные СД обладают неоспоримыми преимуществами по сравнению с лампами накаливания по устойчивости к механическим воздействиям.