
ВЛИЯНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ПНЕВМАТИЧЕСКОГО КОЛЕСА НА СОПРОТИВЛЕНИЕ КАЧЕНИЮ

Кузьмич Кирилл .Александрович Научный руководитель — канд. техн. наук, доц. Ким Ю.А.

На величину деформации шины при прочих равных условиях в большей степени влияет внутришинное давление воздуха. При его увеличении деформация шины уменьшается и пневматик приближается к жесткому колесу. Так, при качении жесткого колеса по жесткой поверхности, в идеальном случае, вообще не происходит потери энергии за счет деформации взаимодействующих тел. Энергия теряется лишь за счет трения в подшипниках и сопротивления воздуха. Каждый велосипедист знает, что чем выше давление воздуха в шинах его машины, тем легче становится ход, но при этом снижается его плавность. Подбор оптимальных значений давления воздуха в шинах в зависимости от свойств дорожного покрытия.

Элементом контакта колеса с опорной поверхностью является точка. При этом путь, который пройдет колесо за один оборот равен $2\pi_{ceo.}$. Из схемы взаимодействия пневматического колеса с опорной поверхностью видно, что радиус качения R_{min} изменяется за счет деформации шины и элементом контакта является пятно, а путь, который пройдет пневматическое колесо за один оборот будет равен $2\pi R_{min}$. В остальных же сечениях значения радиусов качения $R_1, R_2, R_3, ..., R_n$, неравны между собой и лежат в пределах разницы радиусов $R_{coo.}$ и $R_{min.}$ Практически для определения пути, проходимого колесом за один оборот пользуются значением приведенного радиуса качения $R_{npue.}$, который определяется экспериментально. Иначе говоря, значения всех радиусов уравниваются.

