НОВЫЕ ЭЛЕКТРОДНЫЕ МАТЕРИАЛЫ НА ОСНОВЕ МАНГАНИТА ИТТРИЯ, ГАДОЛИНИЯ, НЕОДИМА

Д.В. Зносок

Научный руководитель – к.х.н., доцент **А.Ф. Полуян** Белорусский государственный университет

Физико-химические свойства манганитов могут изменяться при замещении марганца на 3d элементы со степенью окисления +2. При введении в подрешетку марганца до 0,1 моль кобальта или никеля возрастает не только электронная, но и ионная проводимость манганита. Наличие смешанной проводимости у электродных материалов увеличивает скорость электрохимической реакции на трехфазной границе Э/ТЭ/Г. К тому же при вжигании на YSZ электродных материалов на основе манганитов с малыми ионными радиусами РЗЭ образование низкопроводящих фаз на границе Э/ТЭ не характерно.

Работа проводится в рамках программы создания новых перспективных электродных материалов с заданными свойствами. Как известно материалы со структурой типа перовскита обладают химической стойкостью, каталитической активностью и могут быть использованы на практике вместо более дорогих платиновых электродов.

Целью данного исследования являлось изучить влияние малых добавок 3d металлов со степенью окисления +2 на физико-химические свойства электродных материалов $Y_{0,5}Ca_{0,5}MnO_3$, $Gd_{0,5}Ca_{0,5}MnO_3$, $Gd_{0,5}Ca_{0,4}MnO_3$, $Nd_{0,7}Ca_{0,3}MnO_3$.

Электродные материалы состава $Gd_{0.5}Ca_{0.5}Mn_{1-x}(Co,Ni)_xO_3$, $Gd_{0.6}Ca_{0.4}Mn_{1-x}(Co,Ni)_xO_3$, $Nd_{0.7}Ca_{0.3}Mn_{1-x}(Co,Ni)_xO_3$, $Y_{0.5}Ca_{0.5}Mn_{1-x}(Co,Ni)_xO_3$ где x=0, 0,05, 0,1 были синтезированы по стандартной керамической технологии. Концентрацию ионов Mn^{4-} в образцах манганитов определяли перманганатометрически. Дилатометрические измерения образцов осуществляли на кварцевом дилатометре. Общую проводимость (χ) измеряли 4-х зондовым методом на постоянном и 2-х зондовым - на переменном токе с частотой 1500 Γ ц в интервале 300-1200К. Для электродного материала состава $Y_{0.5}Ca_{0.5}Mn_{0.95}Ni_{0.05}O_3$ были изучены электрохимические характеристики: параметр сопротивления промежуточного слоя (ρ /d) (ρ - удельное сопротивление слоя, ρ - толщина слоя) на границе электрод/твердый электролит и поляризационное сопротивление (ρ , трехфазной границы ρ /ТЭ/ ρ . ρ /d слоя определяли 4-х зондовым, а ρ - 3-х электродным методами.

Показано что легирование переходными металлами увеличивает концентрацию Mn⁴⁺ от 49 % (x=0) до 62 % (x=0,05 Ni). Значение величины КТР практически не зависит от концентрации переходных металлов. Для составов $Y_{0.5}Ca_{0.5}Mn_{1-x}(Co,Ni)_xO_3$ где x=0,0,05,0,1,изломы на кривых относительного удлиннения от температуры обусловлена О'-О-ромбическим переходом с изменением КТР от $(7.11-7.99)\ 10^{-6}\ K^{-1}$ до $(10,5-11,0)\ 10^{-6}\ K^{-1}$. Для манганитов остальных составов в интервале 300-1100 К фазовые переходы не установлены. Значения величин КТР изменяются от $8,7\ 10^{-6}\ K^{-1}$ до $10,9\ 10^{-6}\ K^{-1}$. Показано, что в области $300-1200\ K$, наибольшими значениями электропроводности для системы Gd_{0.5}Ca_{0.5}Mn_{1-x}(Co,Ni)_xO₃ обладают образцы с x=0, для $Gd_{0.6}Ca_{0.4}Mn_{1-x}(Co,Ni)_xO_3$ и $Nd_{0.7}Ca_{0.3}Mn_{1-x}(Co,Ni)_xO_3$ x=0,1 Ni, для $Y_{0.5}Ca_{0.5}Mn_{1-x}(Co,Ni)_xO_3$ x = 0.05Ni. Характер температурной зависимости полупроводниковый.

При 1100 K, образцы с максимальной проводимостью составов можно расположить в следующую последовательность $Y_{0,5}Ca_{0,5}Mn_{0,95}Ni_{0,05}O_3$ < $Gd_{0,5}Ca_{0,5}Mn_{0,9}Ni_{0,1}O_3$ < $Gd_{0,6}Ca_{0,4}Mn_{0,9}Ni_{0,1}O_3$ < $Nd_{0,7}Ca_{0,3}MnO_3$ В области 300–1100 K для манганита состава $Y_{0,5}Ca_{0,5}Mn_{1-x}(Co,Ni)_xO_3$ где x=0, 0,05, 0,1 температурная зависимость параметра сопротивления границы электродный материал/электролит имеет полупроводниковый характер. Наименьшим значением p/d обладают образцы состава (1) с x=0,05 Ni (при 300K – 294 Ом, 1100 K-1,8 Ом) и толщиной электродного слоя равной 50 мг/см².

Литература.

- 1. Мурыгин И.В. Электродные процессы в твердых электролитах М.: Наука, 1991. -351с.
- 2. Yfmamoto O., Takeda Y., Kanno R., Noda M. Perovskite type oxides as oxides electrodes for high temperature oxide fuel cells // Solid State Ionic. 1987. V.22, № 2. P. 241-246