

14

UDC 004.4

RANDOM ALGORITHM OF FORMING PROGRAMMING TEAMS

ACCOUNTING FOR COMPATIBILITY OF PROGRAMMERS

Prihozhy A. A.

Belarusian National Technical University,

Minsk, Belarus, prihozhy@yahoo.com

Abstract. The compatibility of programmers is one of the main sources of in-

creasing the efficiency of operation of programming teams. In the paper, we have pro-

posed a random algorithm of forming teams which account for compatibility of pro-

grammers and their influence on the teams’ runtime costs. Experimental results have

shown that the random algorithm forms the teams which reduce the runtime costs by

up to 12,49 % compared to the teams generated by the greedy algorithm.

Key words: algorithm, random algorithm, RGAMT, programming teams, agile.

Formal methods of forming programming teams have not received too much at-

tention from scientists. Agile [1; 2] is a set of values and principles of developing soft-

ware over joint efforts of development teams and customers. Paper [3] emphasizes that

a successful software development team must be made up of competent developers. It

presents a hybrid approach based on the NSGA-II multi-objective metaheuristic and

Mamdani Fuzzy Inference Systems to solve the agile team allocation problem. The

agile team formation is a NP-hard problem. Agent-based evolutionary methods of op-

timization [4] aim at performing the management of teams. Papers [5−7] propose tools

that increase the productivity and efficiency of teams working on various projects. Pa-

per [8] proposes a method of formalizing the level of teams’ competency, and paper

[9] solves the problem of allocating experts to maximum set of programming teams.

Papers [10−13] developed a genetic algorithm-based approach for forming the teams.

This paper proposes a random algorithm of forming teams which accounts for compat-

ibility of programmers and their influence on runtime costs.

Let P = {p0, …, pn–1} be a set of n programmers participating in an IT project.

Vector t = (t0, … ti, … tn–1) describes the basic programmers’ runtime costs to be spent

while working on the project. Let G = {g1…gk} be a set of teams the programmers must

be allocated to. The runtime of programmers included in the same team should be cor-

rected accounting for the programmers’ compatibility. Element (i, j) of input matrix dP

is a positive / negative change of programmer j’s runtime tj in percent caused by pro-

grammer i. Matrix dT calculated through dP represents pairwise changes of the pro-

grammers’ runtimes due to including the programmers in the same team. If program-

mer j is included in team g, the runtime tj is changed to tj(g) that is evaluated as

())(1)(
,

, gdTtdTtgt jj

jigi

jijj +=+= 


, (1)

15

where

()


=
jigi

jij dPgdT
,

, 100/)(, (2)

The overall runtime T(g) of the programmers of team g is




=
gi

j gtgT)()((3)

and the overall runtime of programming teams of set G is




=
Gg

G gTT)(. (4)

The compatibility of each programmer with all other programmers is evaluated

because of forming a team single = P. Let Ω be a set of all possible partitioning of set

P of programmers. An element of set Ω is a set G of teams established on the set P of

programmers. The optimization problem we solve in the paper is

min
𝐺∈Ω

 {𝑇𝐺}. (5)

Like work [13], this paper assumes that the elements of matrices dP and dT remain

the same after adding a programmer to a team during solving problem (5). Since ele-

ments dTi,j can be both positive and negative, problem (5) is similar to the clique par-

titioning problem [14; 15] which is NP-hard. To solve (5) for large sets of program-

mers, a greedy algorithm of the stepwise pairwise merge of teams is proposed in [13].

In this paper we extend the algorithm to a random one with the aim of reducing the

runtime of programmers in teams.

Algorithm 1 describes the random greedy stepwise pairwise merge of teams

(RGAMT). Its inputs are the set P of programmers, vector t of programmers’ runtimes,

and matrix dT of runtime changes. Its outputs are the set G of teams and the changed

runtime costs T(G) which accounts for the programmer’s compatibilities. The algo-

rithm starts with n teams each consisting of a single programmer. In the while loop, it

determines for each team another best team for merging (array BestC), which yields

a maximum of the runtime costs reduction.
−−−

Algorithm 1: Random greedy algorithm of stepwise pairwise merge of teams

(RGAMT)

−−−

Input: A set P = (p0…pn–1) of programmers

Input: A vector t of programmer basic runtimes

Input: A matrix dT of programmer runtime changes

Output: A set G of programming teams

Output: A runtime T(G) of programming teams

G   T(G)  0 go  true

for i  0 to n − 1 do

gi  {pi} T(gi)  ti

G  G  {gi}

T(G)  T(G) + ti

while (go) do

16

go  false

for j  0 to |G| − 1 do

BestC(gj).T  

BestC(gj).team  undefined

for k  0 to |G| − 1 do

if j ≠ k then

T(gj, gk)  RuntimeChange(t, dT, gj, gk)

if BestC(gj).T > T(gj, gk) then

BestC(gj).T  T(gj, gk)

BestC(gj).team  gk

g’ SelectPairRandomly(G, BestC)

g”  BestC(g’).team

if BestC(g’).T < 0 then

go  true

g  g’  g”

T(g)  T(g’) + T(g”) + BestC(g’).T

G  (G \ {g’, g”})  {g}

T(G)  T(G) + BestC(g’).T

return G, T(G)

−−−

Algorithm RuntimeChange calculates the overall reduction (if possible) of

runtimes of potentially merged teams gj and gk using (2) for estimating the influence of

each programmer of team gj on the runtime of each programmer of team gk, and wise

versa. Vector t and matrix dT are used for the calculation. Algorithm 2, SelectPairRan-

domly selects the elements of BestC with negative values of T and randomly chooses

one of them using the roulette rule. The teams g’ and g” with smaller negative value

of T are assigned a larger probability and have bigger chances to be chosen for merg-

ing. Teams g’ and g” are removed from G and a new team g’  g” is added to G. If

for each element of BestC the value of T is positive the merging process is over.

−−−

Algorithm 2: Random selection of teams to be merged (SelectPairRandomly)

−−−

Input: A set G of programming teams

Input: A vector BestC associating each team of G with other team yielding minimum

runtime after merging

Output: A team g’  G randomly selected for merging

Output: A team g” = BestC(g’).team to be merged with g’

G*   T  0

for each q  G do

if BestC(q).T < 0 then

G*  G*  {q}

T  T − BestC(q).T

for each q  G* do

probability(q)  − BestC(q).T / T

rnd  random() g’  undefined

for each q  G* do

17

if rnd  probability(q) then

g’  q

break for

else

rnd  rnd − probability(q)

return g’

−−−

Algorithm 3 organizes the multiple execution of Algorithm 1 (RGAMT) and the selec-

tion of partitioning G which provides the smallest overall runtime of programmers assigned

to the teams of G along all iterations of the loop. The control parameter Iter defines the num-

ber of attempts to find a better solution Gbest and to improve the runtime T(Gbest).

If large sets of programmers are assigned to programming teams, the optimization

algorithms can consume much CPU time. In this case, the parallelization approach is

attractive [16–19], which can speed up computations significantly on multi-core pro-

cessors and multi-processor systems.

Results. We have developed a software written in the C++ language under Visual

Studio 2022 and OS Windows 10 for forming and optimizing programming teams ac-

counting for the compatibility of programmers. The experiments were done on Intel Core

i7-10700 CPU processor on various sets P of programmers, vectors t of runtimes and ma-

trices dP of programmers’ runtimes changes. Figure 1 shows that forming the team single

can both increase and decrease the overall runtime of programmers against the teams of

separate programmers. The greedy algorithm GAMT has decreased the overall teams’

runtime by 7,76–34,2 %, while the random algorithm CRGA-RGAMT has decreased it by

9,93–36,86 %. Figure 2 shows that the random algorithm CRGA-RGAMT has outper-

formed the greedy algorithm GAMT by 0,11–4,03 % and by 4,55–12,49 % at 5 % and

10 % of average value of the matrix dP‘s element respectively.

−−−

Algorithm 3: Control of multiple execution of RGAMT algorithm (CRGA)

−−−

Input: A set P = (p0…pn–1) of programmers

Input: A vector t of programmer basic runtimes

Input: A matrix dT of programmer runtime changes

Input: A number Iter of RGAMT execution

Output: A best set Gbest of programming teams

Output: A smallest runtime T(Gbest) of partitioning Gbest

Gbest  undefined T(Gbest)  

for i  1 to Iter do

G  RGAMT(P, t, dT)

if T(Gbest) > T(G) then

T(Gbest)  T(G) Gbest  G

return Gbest, T(Gbest)

−−−

18

Conclusion.

The compatibility of programmers is one of the main sources of increasing the

efficiency of operation of programming teams. In the paper, we have proposed a ran-

dom algorithm of forming teams which accounts for compatibility of programmers

working on the same IT project. The algorithm is based on the recently proposed greedy

algorithm of pairwise stepwise merging of teams initialized by including each pro-

grammer in a separate team. It is shown by conducting computational experiments and

analyzing the obtained results that the random algorithm forms the teams which reduce

the runtime costs of programmers working on the IT project compared to the teams

generated by the greedy algorithm. The random algorithm can be easily parallelized to

exploit resources of multi-core processors and multiprocessor systems.

Figure 1 – Comparison (%) of separate, single, greedy (algorithm GAMT) and random

(algorithm CRGA-RGAMT) teams regarding the overall runtime vs. number of programmers

Figure 2 – Reduction (%) of overall teams’ runtime costs of random CRGA-RGAMT

algorithm against greedy GAMT algorithm vs. number of programmers at 5 % (rectangular) and

10 % (triangular) of values of matrix dP‘s elements on average

-20,00

-10,00

0,00

10,00

20,00

30,00

40,00

10 20 30 40 50 60 70 80 90 100

Single / Separate Greedy / Single Random / Single

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

10 20 30 40 50 60 70 80 90 100

Random / Greedy (5%) Random / Greedy (10%)

19

References:

1. Joshi, S. Agile Development – Working with Agile in a Distributed Team En-

vironment / S. Joshi // MSDN Magazine, – 2012. – Vol. 27, No. 1. – P. 1–6.

2. Masood, Z., Hoda, R., Blincoe, K. Exploring Workflow Mechanisms and Task

Allocation Strategies in Agile Software Teams. In: Baumeister H., Lichter H., Riebisch

M. (eds) Agile Processes in Software Engineering and Extreme Programming. XP 2017.

Lecture Notes in Business Information Processing, 2017, vol. 283. Springer, Cham.

3. A hybrid approach to solve the agile team allocation problem / R. Britto [et al.] //

2012 IEEE Congress on Evolutionary Computation. – 2012. – P. 1−8.

4. Rachlin, J. [et al]. A-Teams: An Agent Architecture for Optimization and De-

cision-Support // In: Müller, J. P., Rao, A. S., Singh, M. P. (eds). Intelligent Agents V:

Agents Theories, Architectures, and Languages. ATAL, 1998. Lecture Notes in Com-

puter Science, 1999, vol. 1555. Springer, Berlin, Heidelberg.

5. Wrike [Electronic resource]. – Mode of access: https://www.wrike.com/. –

Date of access: 10.11.2023.

6. Flow [Electronic resource]. – Mode of access: https://www.getflow.com/. –

Date of access: 10.11.2023.

7. The multiple team formation problem using sociometry / J. H. Gutierrez [et

al.] // Computers and Operations Research. – 2016. – Vol. 75. – P. 150−162.

8. Прихожий, А. А. Метод оценки квалификации и оптимизация состава

профессиональных групп программистов / А. А. Прихожий, А. М. Ждановский //

Системный анализ и прикладная информатика. – 2018. – № 2. – С. 4−11.

9. Prihozhy, A. A. Exact and greedy algorithms of allocating experts to maxi-

mum set of programmer teams / A. A. Prihozhy // System analysis and applied infor-

mation science. – 2022. – № 1. – Р. 40–46.

10. Prihozhy, A. Genetic algorithm of optimizing the size, staff and number of pro-

fessional teams of programmers / A. Prihozhy, A. Zhdanouski // Open Semantic Tech-

nologies for Intelligent Systems – Minsk : BSUIR Publ., 2019. – Р. 305–310.

11. Prihozhy, A. A. Genetic algorithm of optimizing the qualification of program-

mer teams. / A. A. Prihozhy, A. M. Zhdanouski // System analysis and applied infor-

mation science. – 2020. – № 4. – Р. 31–38.

12. Prihozhy, A. A., Zhdanouski, A. M. Genetic algorithm of allocating program-

mers to groups / A. A. Prihozhy, A. M. Zhdanouski // Science to education, industry and

economics: Proceedings of 13th international conference. – Minsk : BNTU Publ., 2015. –

Vol. 1. – P. 286–287.

13. Prihozhy, А. А. Optimization of programming teams on compatibility of pro-

grammers / A. A. Prihozhy // Proceedings of BSTU, issue 3, Physics and Mathematics.

Informatics. – 2023. – No. 2 (272). – P. 104–110.

14. Grotschel, M. A cutting plane algorithm for a clustering problem /

M. Grotschel, Y. Wakabayashi // Mathematical Programming. – 1989. – Vol. 45,

No. 1. – P. 59–96.

15. Prihozhy, A. A. Optimization of data allocation in hierarchical memory for

blocked shortest paths algorithms / A. A. Prihozhy // System analysis and applied in-

formation science, 2021. – No. 3. – P. 40–50.

20

16. Prihozhy, A. A. Analysis, transformation and optimization for high perfor-

mance parallel computing / A. A. Prihozhy. – Minsk : BNTU Publ., 2019. – 229 p.

17. Prihozhy, A. A.  Asynchronous scheduling and allocation / A. A. Prihozhy //

Proceedings Design, Automation and Test in Europe. Paris, France.  – IEEE, 1998. –

P. 963–964.

18. Techniques for optimization of net algorithms / A. Prihozhy [et al.] // 2002

International Conference on Parallel Computing in Electrical Engineering (PARELEC

2002), Warsaw, Poland, 22–25 September 2002. – IEEE, 2002. – Р. 211–216.

19. Pipeline synthesis and optimization from branched feedback dataflow pro-

grams/ A. A. Prihozhy [et al.] // Journal of Signal Processing Systems, Springer Na-

ture. – 2020. – Vol. 92. – Р. 1091–1099.

