УДК 621.311

RHODOCOCCUSRUBER — РЕШЕНИЕ ПРОБЛЕМ ЭКОЛОГИИ И ЭНЕРГЕТИКИ RHODOCOCCUSRUBER — SOLVING ENVIRONMENTAL AND ENERGY PROBLEMS

Г.А. Судин, С.Г. Сидорович, Ю.П. Гловацкая Научный руководитель — Е.А. Дерюгина, к.т.н., доцент Белорусский национальный технический университет, г. Минск, Республика Беларусь Н. Sudzin, S. Sidarovich, Y. Hlavatskaya Supervisor — E. Deryugina, Candidate of Technical Sciences, Docent Belarusian national technical university, Minsk, Belarus

Аннотация: В данной статье рассмотрена возможность использования бактерий вида Rhodococcusruber с целью решения двух задач. Первой задачей является утилизация отходов пластмассы за короткий промежуток времени путем разложения на более простые компоненты, второй — использование данных компонентов с целью выработки электроэнергии.

Abstract: This article discusses the possibility of using bacteria of the species Rhodococcus ruber in order to solve two problems. The first task is to dispose of plastic waste in a short period of time by decomposing into simpler components, the second is to use these components to generate electricity.

Ключевые слова: Rhodococcusruber, утилизация пластика, выработка электроэнергии, альтернативная энергетика, возобновляемый источник, экология.

Keywords: Rhodococcus ruber, plastic recycling, power generation, alternative energy, renewable energy, ecology.

Ввеление

На данный момент времени проблема загрязнения пластиком окружающей среды является одной из наиболее важных во всем мире, включая Республику Беларусь. Все более широкое использование пластика, его уникальные свойства и долговечность привели к тому, что пластик стал неотъемлемой частью нашей жизни, но одновременно и серьезной проблемой. Влияние пластика на биоразнообразие, здоровье животных и человека, а также долгосрочные последствия его накопления и распространения требуют серьезного внимания и принятия действенных мер для смягчения данной экологической проблемы.

В данной работе рассмотрим возможное решение и направление для более устойчивой и экологически безопасной переработки пластика.

Основная часть

Rhodococcus ruber — это вид грам-положительных бактерий, относящихся к роду Rhodococcus. Они обладают разнообразными метаболическими способностями, такими как биодеградация различных органических соединений, включая пластиковые полимеры [3].

Важным свойством Rhodococcus ruber является его способность к биоразложению пластмассы. Этот микроорганизм может использовать пластик в качестве источника питательных веществ, разлагая его с помощью определенных ферментов, таких как гидролазы. В результате процесса биодеградации Rhodococcus ruber способен разлагать полимеры на более простые органические соединения. Для получения биогаза, основным процессом является биологическое разложение органического материала при помощи микроорганизмов в анаэробных условиях [2]. Формула для основного этапа преобразования органического материала:

Органический материал (например, биомасса) \rightarrow Микроорганизмы \rightarrow Метаболиты.

Метаболиты, полученные в результате биодеградации пластика от бактерий, представляют собой органические молекулы, которые являются промежуточными или конечными продуктами метаболических процессов в бактериальных клетках. Эти метаболиты могут включать различные органические кислоты, аминокислоты, сахара, а также другие органические соединения, образующиеся в результате биологического разложения пластика. В контексте производства биогаза, метаболиты, полученные из процесса биодеградации пластика, могут служить субстратом для метаногенных бактерий, которые превращают их в метан — главный компонент биогаза [3]. В итоге формула принимает вид:

Органический материал \to Микроорганизмы \to Метаболиты \to Биогаз: метан + CO2 + другие газы.

В конечном результате образуются соединения метана, которые в дальнейшем можно использовать в качестве топлива.

Рассмотрим теоретическое использование разработки в Минской области.

На начальном этапе проект потребует инвестиций в строительство объекта, закупку оборудования, разработку технологических процессов, маркетинг. Упрощено объект будет представлять собой перерабатывающий комплекс, который будет включать в себя: перерабатывающий цех, резервуары для хранения газа, мини-ТЭС (газовая электростанция), пункт приема пластмассы со всем комплектующим оборудованием [1].

Упрощенный технологический процесс будет иметь вид: поступление и складирование пластика \rightarrow переработка материала \rightarrow сбор биога-за \rightarrow складирование газа в специальных резервуарах \rightarrow генерация электроэнергии \rightarrow использование электроэнергии на собственные нужды и передача в общую сеть.

Заключение

Приведенная выше модель показывает, что у данного комплекса появляются серьезные перспективы при наличии государственных льгот и финансировании в течении определенного периода времени, после чего данный комплекс сможет перейти на полное самообеспечение решив тем самым две задачи: переработка отходов пластмассы Минской области, а также частичная разгрузка электросистемы.

Литература

- 1. ТКП 339-2022 [Электронный ресурс]. Режим доступа: https://minenergo.gov.by/. Дата доступа: 30.03.2024.
- 2. Haft, D.H. Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. [Электронный ресурс]. Режим доступа: https://pubmed.ncbi.nlm.nih.gov/21223593/. Дата доступа: 30.03.2024.
- 3. Alvarez, H. M. Biology of Rhodococcus [Электронный ресурс].— Режим доступа: https://link.springer.com/book/10.1007/978-3-030-11461-9. Дата доступа: 30.03.2024.