УДК 620.171.32

ДЕФОРМАЦИИ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ, ВЫЗВАННЫЕ ДЕЙСТВИЕМ ТЕМПЕРАТУРЫ

Студенты гр. 10706122 В. Д. Леонов, Е. В. Ломаченков Научный руководитель — доцент Реут Л.Е. Белорусский национальный технический университет Минск, Республика Беларусь

Множество конструкций, особенно в области машиностроения, функционируют не только под воздействием нагрузок, но и в условиях изменяющихся температур. В процессе эксплуатации они могут подвергаться значительному нагреву или охлаждению. Эти температурные изменения существенно влияют на прочность и жесткость элементов конструкции, что требует обязательного учета при их расчете и проектировании.

Статически определимые системы. Рассмотрим плоскую конструкцию, подвергающуюся действию системы сил (рисунок 1, a) и, используя интеграл Максвелла—Мора, определим вертикальное перемещение сечения B.

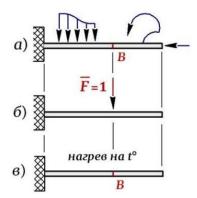


Рисунок 1. – Плоская конструкция, подвергающаяся действию сил

Освобождаем систему от внешней нагрузки, в заданном сечении по направлению искомого перемещения прикладываем единичную силу и вычисляем Δ по интегралу Мора (рисунок 1, δ):

$$\Delta_B = \int \frac{N_F \overline{N}}{EA} dz + \int \frac{Q_F \overline{Q}}{GA} dz + \int \frac{M_F \overline{M}}{EI_x} dz, \qquad (1)$$

где N_F, Q_F, M_F – грузовые внутренние усилия, а $\bar{N}, \bar{Q}, \bar{M}$ – единичные внутренние усилия.

Теперь определим это же перемещение от нагрева элемента и при отсутствии внешних сил (рисунок 1, в). В этом случае грузовые

внутренние усилия N_F, Q_F, M_F в выражении (1) заменяем на температурные значения – N_t, Q_t, M_t и интеграл Мора принимает вид

$$\Delta_B = \int \frac{N_t \overline{N}}{EA} dz + \int \frac{Q_t \overline{Q}}{GA} dz + \int \frac{M_t \overline{M}}{EI_x} dz.$$
 (2)

Рассмотрим равномерный и неравномерный нагрев системы и вычислим перемещения при температурных изменениях.

Равномерный нагрев

Равномерный нагрев означает, что внутренние и наружные части конструкции нагреваются на одинаковую температуру (рисунок 2, a):

$$t^{\circ}_{\text{Hap}} = t^{\circ}_{\text{BH}} = t^{\circ}.$$

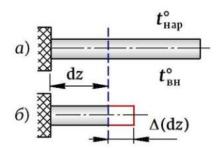


Рисунок 2. – Нагреваемая конструкция

Вырежем элемент бесконечно малой длины dz (рисунок 2, δ) и по известной формуле запишем его удлинение от нагрева:

$$\boxed{\Delta l_t = \alpha t^{\circ} l} \rightarrow \Delta (dz) = \alpha t^{\circ} dz, \tag{3}$$

где α – коэффициент температурного удлинения материала.

Определим величину продольной силы N_t , которая могла бы вызвать такое же удлинение элемента. Согласно закону Гука

$$\Delta (\mathrm{d}z) = \frac{N_t \mathrm{d}z}{EA},\tag{4}$$

поэтому приравниваем выражения (3) и (4) и получаем

$$\alpha t^{\circ} dz = \frac{N_t dz}{FA} \rightarrow N_t = \alpha EAt^{\circ}.$$
 (5)

Подставляем значение N_t (5) в интеграл Мора (2) и, учитывая, что при равномерном нагреве происходит только изменение длины элемента, но в нем не возникают сдвиг и изгиб, т. е. $Q_t = 0$ и $M_t = 0$, получаем решение в виде

$$\Delta_B = \int \frac{N_t \overline{N}}{EA} dz = \int \frac{\alpha EAt^{\circ} \overline{N}}{EA} dz = \alpha t^{\circ} \int \overline{N} dz,$$

где $\int \overline{N} dz = \omega_{\overline{N}}$ — площадь эпюры продольной силы от единичной нагрузки. Тогда окончательная формула для определения перемещений при равномерном нагреве (или охлаждении) принимает вид

$$\Delta_B = \alpha t^{\circ} \omega_{\bar{N}}. \tag{6}$$

Неравномерный нагрев

При неравномерном нагреве внутренние и наружные поверхности конструкции нагреваются неодинаково ($t^{\circ}_{\text{нар}} \neq t^{\circ}_{\text{вн}}$). В результате происходит не только изменение длины элементов, но и их изгиб.

Рассмотрим элемент с высотой сечения h (рисунок 3, a), подвергающийся неравномерному нагреву, при котором $t^{\circ}_{\text{нар}} > t^{\circ}_{\text{вн}}$. Вырежем бесконечно малую часть элемента длиной dz и определим возникающие в ней деформации (рисунок 3, δ).

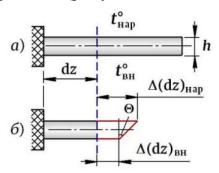


Рисунок 3. – Элемент с высотой сечения h

Изменение длины наружных и внутренних волокон стержня соответственно будут

$$\Delta (dz)_{\text{Hap}} = \alpha t^{\circ}_{\text{Hap}} dz;$$

$$\Delta (dz)_{\text{BH}} = \alpha t^{\circ}_{\text{BH}} dz.$$
(7)

Изменение длины вырезанной части определяем по оси элемента как среднюю линию трапеции:

$$\Delta(dz) = \frac{\Delta(dz)_{\text{Hap}} + \Delta(dz)_{\text{BH}}}{2}$$
,

откуда на основании значение (7) получаем

$$\Delta(dz) = \frac{\alpha t^{\circ}_{\text{Hap}} dz + \alpha t^{\circ}_{\text{BH}} dz}{2} = \alpha \frac{t^{\circ}_{\text{Hap}} + t^{\circ}_{\text{BH}}}{2} dz.$$
 (8)

Определим продольную силу N_t , которая могла бы вызывать такое же удлинение. По закону Гука удлинение определяется как

$$\Delta (\mathrm{d}z) = \frac{N_t \mathrm{d}z}{EA}.\tag{9}$$

Приравниваем значения (8) и (9) и получаем

$$N_t = \alpha EA \frac{t^{\circ}_{\text{Hap}} + t^{\circ}_{\text{BH}}}{2}.$$
 (10)

При неравномерном нагреве сечение не только перемещается вдоль оси, но и за счет изгиба элемента поворачивается на угол θ , который на основании рисунка 3, δ и значений (7) определяется как

$$tg\theta \approx \frac{\alpha t^{\circ}_{\text{Hap}} dz - \alpha t^{\circ}_{\text{BH}} dz}{h} = \alpha \frac{t^{\circ}_{\text{Hap}} - t^{\circ}_{\text{BH}}}{h} dz.$$
 (11)

Определим изгибающий момент M_t , который при изгибе вызвал бы такой же поворот сечения. Используем дифференциальное уравнение изогнутой оси балки и в результате его интегрирования получаем

$$\frac{\mathrm{d}^2 y}{\mathrm{d}z^2} = \frac{M_{\mathrm{M3}\Gamma}}{EI_x} \to \theta = \frac{\mathrm{d}y}{\mathrm{d}z} = \int_0^{\mathrm{d}z} \frac{M_{\mathrm{M3}\Gamma}}{EI_x} \mathrm{d}z = \int_0^{\mathrm{d}z} \frac{M_t}{EI_x} \mathrm{d}z = \frac{M_t \, \mathrm{d}z}{EI_x}.$$
 (12)

Приравняем значения (11) и (12) и получаем

$$M_t = \alpha E I_x \frac{t^{\circ}_{\text{Hap}} - t^{\circ}_{\text{BH}}}{h}.$$
 (13)

Подставляем значения N_t (10) и M_t (13) в интеграл (2) и, учитывая, что при неравномерном нагреве, так же как и при равномерном, деформации сдвига нет, т. е. $Q_t = 0$, после преобразования получаем

$$\Delta_B = \alpha \frac{t^{\circ}_{\text{Hap}} + t^{\circ}_{\text{BH}}}{2} \int \overline{N} dz + \alpha \frac{t^{\circ}_{\text{Hap}} - t^{\circ}_{\text{BH}}}{h} \int \overline{M} dz,$$

где $\int \bar{N} dz = \omega_{\bar{N}}$ и $\int \bar{M} dz = \omega_{\bar{M}}$ — соответственно площади эпюр продольной силы и изгибающего момента от единичной нагрузки.

Тогда окончательная формула для определения перемещений при неравномерном нагреве (или охлаждении) принимает вид

$$\Delta_B = \alpha \frac{t^{\circ}_{\text{ Hap}} + t^{\circ}_{\text{ BH}}}{2} \omega_{\bar{N}} + \alpha \frac{t^{\circ}_{\text{ Hap}} - t^{\circ}_{\text{ BH}}}{h} \omega_{\bar{M}}.$$

Статически неопределимые системы. Одной из особенностей статически неопределимых систем, которые работают в условиях температурных изменений, является возникновение в элементах температурных напряжений. При одновременном силовом нагружении эти напряжения могут привести к потере прочности элементов. Не менее важным последствием температурного воздействия является потеря

жесткости конструкции, которая связана с деформацией и перемещением узлов, приводящих к изменению формы всей системы. В статически вопрос определения неопределимых системах перемещений, вызванных действием температуры, решается следующим образом. Первоначально методом сил раскрывается статическая неопределимость системы. В зависимости от условий работы последним слагаемым в канонических уравнениях метода сил является перемещение, вызванное фактором, воздействующим на систему: при силовом воздействии таким слагаемым является грузовой коэффициент Δ_F , при температурном — Δ_t , при совместном действии внешних сил и температуры записываются оба слагаемых. И тогда, в случае силового и температурного воздействия, канонические уравнения принимают вид

$$\begin{cases} \delta_{11}X_1 + \delta_{12}X_2 + \Delta_{1F} + \Delta_{1t} = 0; \\ \delta_{21}X_1 + \delta_{22}X_2 + \Delta_{2F} + \Delta_{2t} = 0. \end{cases}$$

Заключение. Термические деформации, т. е. изменение размеров и формы тела под действием температуры, неизбежно происходят в конструкциях, используемых машиностроении, В и в любом другом твердом теле. Это изменение размеров может привести к прогибу, растяжению или сжатию отдельных участков при температуры всей конструкции. Возникновение изменении деформаций необходимо температурных учитывать проектировании и эксплуатации различных машиностроительных конструкций и строительных сооружений. Для этого используются методы аналитического, численного и экспериментального решения, выбор которых зависит от сложности задачи, требуемой точности расчета и наличия необходимых данных. Важно понимать, температурные перемещения могут быть незначительными, несмотря на это, их стоит учитывать при расчетах, ведь даже небольшое их значение может оказать серьезное влияние на работу конструкции.

Литература

- 1. Феодосьев, В.И. Сопротивление материалов / В.И. Феодосьев. М.: Наука, 1986. 512 с.
- 2. Статически неопределимые системы при плоском поперечном изгибе [Электронный ресурс]: учебно-методическое пособие для студентов машиностроительных специальностей / Л. Е. Реут; Белорусский национальный технический университет, кафедра «Теоретическая механика и механика материалов». Минск: БНТУ, 2021. Режим доступа https://rep.bntu.by/handle/data/104396.