$$\gamma_{(ki)} = \frac{t_{T.\Pi(ki)}}{t_{o(ki)}} = \overline{h}_{ki} t_{3k} \overline{v}_{ki} 100.$$

Литература

1. Лукинский В.С. Котиков Ю.Г., Зайцев Е.И. Расчет надежности узлов трансмиссии и подвески автомобиля. — Л., 1976, с. 78. 2. Филимончик И.И. Нагрузочный режим и долговечность автомобильных трансмиссий: Канд. дис. — Мн., 1978. 3. Индикт Е.А., Алиев В., Браильчук П.Л. Исследование надежности автомобилей в высокогорных условиях эксплуатации. — Автомобильная промышленность, 1972, № 11. 4. Альгин В.Б. Динамика и надежность трансмиссий мобильных машин: Канд. дис. — Мн., 1978.

УДК 629.113.001.4

Б.У.Бусел, А.И.Гришкевич, М.Н.Диденко, А.В.Марамашкин, В.И.Чечик

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРИЦЕПА НА НАГРУЖЕННОСТЬ ТРАНСМИССИИ АВТОМОБИЛЯ

При движении автомобиля с прицепом происходит дополнительное нагружение его трансмиссии и как следствие этого - уменьшение ее долговечности.

Особенности формирования нагрузок в трансмиссиях автомо-билей-тягачей в настоящее время изучены недостаточно. Это не позволяет обоснованно нормировать пробеги автопоездов в различных условиях эксплуатации, а также использовать опыт проведения полигонных испытаний одиночных автомобилей для оценки работоспособности автопоездов.

С целью оценки влияния прицепа на нагруженность трансмиссии проведены испытания автомобиля МАЗ-500А одиночного и в составе автопоезда с прицепом МАЗ-8926. При испытаниях регистрировались крутящий момент на полуоси, скорость движения, отметки оборотов колеса. Пробеги проводились по следующим маршрутам Центрального научно-исследовательского автомобильного полигона НАМИ: № 1 — скоростная дорога (магистральные условия); № 2 — маршрут, моделирующий горные условия; № 3 — булыжная дорога; № 4 — маршрут, моделирующий режим городского движения; № 5 — ровная булыжная дорога комплекса спецдорог.

Таблица 1. Параметры режима движения

Параметр	.	æe∐	Передача КП	2		
	1	II		Iy	y	Н
			Mapmpyr №1			
ູ %	ı	0.07 0,18	0.49	7,93	90,37	1,14 2,12
æ	ı		⊢ €	თ დ	ന ന	ı
%. %.	1,88	0.62	Mapupyr №2 7,34 12,7	37,1 25,2	52.6 42,3	2,34
E	ı	3	ତ ା ଷ	15 15	∞ ~.	t
% 0	i	12,7 13,2	Mapupyr Ne3 10.1 20,4	26.2	47,2 29,1	3,7
E	ı	4 0	10	ကြ	예(0	I
		,	Mapupyr Ne4			
%.	ť	1,53 3,34	9,54	45,3	38.6 16,6	10,3 6,1
ш	1	$\frac{17}{21}$	24 29	34 24	14	
Приме	Примечание, В	В числителе - дл	для одиночного автомобиля, в знаменателе -	гомобиля, в		для автопоезда.

Режим движения автомобиля и автопоезда на всех маршру - тах, кроме последнего, соответствовал принятой на полигоне методике ресурсных испытаний автомобилей и автопоездов [1]. Испытания на ровном булыжнике проводились при движении с постоянной скоростью. При всех испытаниях автомобилем и автопоездом управлял один водитель.

В табл. 1 приведены результаты испытаний, характеризую — шие использование передач по пути S %, количество включений каждой передачи m на маршруте.

Данные таблицы показывают, что процент использования низших передач при движении автопоезда на всех маршрутах существенно выше, что при движении одиночного автомобиля. Таким образом, доля относительно высоких средних значений момента в трансмиссии автопоезда больше, чем в трансмиссии автомобиля. На каждом из первых трех маршрутов при движении автопоезда было выполнено примерно в 1,5 раза больше переключений передач, чем при движении одиночного автомобиля. Исключение составил маршрут, моделирующий городской режим движения, где этот показатель был в 1,1 раза большим для автомобиля за счет более частых включений высших передач.

Для исследования особенностей колебательных процессов трансмиссии автопоезда использовались реализации полученные при движении по ровному булыжнику спецдорог. На рис. 1 показаны спектральные плотности момента на полуоси одиночного автомобиля МАЗ-500А и этого автомобиля в составе автопоезда с прицепом МАЗ-8926. Видно, что интенсивность низкочастотных колебаний в диапазоне до 3-4 Гц момента в трансмиссии автопоезда значительно автомобиля. чем трансмиссии одиночного Так, для автопоезда в полосе частот 0,5-20 Гц дисперсия момента на III передаче равна 25000 $(H \cdot M)^2$; на 1У - 24300 $(H \cdot M)^2$; для автомобиля – соответственно 12000 $(H \cdot M)^2$ 13500 (Н.м). Начиная с частоты 4 Гц характер протекания и уровень спектральной плотности момента на полуоси для одиночного автомобиля и автопоезда отличаются мало. тельно, в трансмиссии автопоезда повышается не только среднее значение момента, обусловленное увеличением веса и противления воздуха, но изменяется механизм формирования динамических длительно действующих нагрузок. Наиболее существенным фактором процесса формирования динамических нагру зок в трансмиссии автопоезда представляется взаимосвязь колебаний тягача и прицепа.

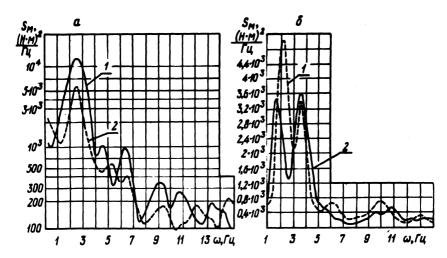


Рис. 1. Спектральная плотность момента на полуоси: a- движение на III передаче со скоростью 7 м/с; 6- движение на IV передаче со скоростью 14 м/с; 1- автопоезд; 2- одиночный автомобиль.

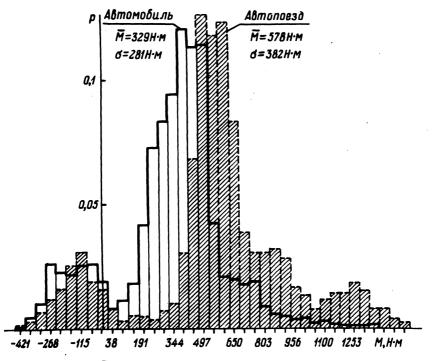


Рис. 2. Гистограмма момента на полуоси.

Осциллограммы крутящего момента и скорости, полученные при выполнении маршрутов по программе ресурсных испытаний, обрабатывались с дискретизацией по пути. Шаг выборки имел величину 1,66 м. В ряде случаев для уточнения статистических параметров процесса нагружения полуоси при движении на 1 и II передачах шаг выборки уменьшался до 0,28 м. Полученный статистический материал сортировался по уровням. На рис. 2 по-казаны суммарные гистограммы распределения момента на полуоси для автомобиля и автопоезда, соответствующие испыта—ниям по программе ресурсных испытаний, за исключением маршрута по грунтовой дороге автополигона.

Вид гистограмм, их взаимное расположение показаны на рис. 2, а значения статистических параметров момента приведены в табл. 2.

Как видим, нагруженность трансмиссии автопоезда значи-тельно выше, чем автомобиля.

Для количественного сравнения нагруженности трансмиссий автомобиля и автопоезда удобно использовать сопоставимые величины накопления усталостных повреждений [2]. Для зубчатых колес сопоставимая величина накопления усталостного поврежения по контактной выносливости при движении на передаче определяется выражением

$$R_n = \sum_{i} (M_i^*)^3 p_i$$
,

где R_n – сопоставимая величина накопления усталостного повреждения на n-й передаче; p_i – частость i –го уровня момента.

Расчетное значение момента находилось по выражению [3]

$$\mathsf{M}_{i}^{\star} = \left(\mathsf{M}_{i} + \mathsf{M}_{i1} \mathsf{v}\right) \mathsf{K}_{\mathsf{H} \boldsymbol{\gamma}} \ ,$$

где M_i – момент, соответствующий уровню i; M_{i1} – внутренняя динамическая нагрузка при окружной скорости в зубчатом зацеплении 1 м/с; v – окружная скорость в зацеплении; $K_{H\delta}$ коэффициент, учитывающий неравномерность распределения нагрузки между зубьями.

При расчетах величина V принималась равной средней окружной скорости на передаче.

Сопоставимая величина накопления усталостного поврежде - ния при движении по испытательному маршруту определялась как сумма

$$R = \sum_{n} R_{n} \gamma_{sn},$$

Таблица 2. Статистические параметры момента

Параметры, $H \cdot M = \overline{M}$						
	6	M	Q	M	б	M 6
Автомобиль 318	244	337	491	411	447	493 472
Автопоезд 556	367	563	760	707	617	639 531

где γ_{Sn} - относительное использование n -й передачи по пути в долях единицы.

Сопоставимые величины накопления усталостных повреждений при ресурсных испытаниях находились с учетом относительной доли каждого маршрута.

В табл. З приведены результаты расчетов для колесной и центральной передач ведущего моста. Сопоставимые величины накопления усталостных повреждений для каждой из зубчатых передач при движении одиночного автомобиля МАЗ-500А по скоростной дороге приняты за единицу.

Исследования показали, что режим нагружения трансмиссии автопоезда МАЗ существенно напряженнее нагрузочного режима одиночного автомобиля по следующим причинам:

1) изменяется режим движения; 2) возрастает среднее значение момента в трансмиссии; 3) возрастает интенсивность нлз-кочастотных колебательных процессов в трансмиссии.

Таблица 3. Темп накопления усталостных повреждений в зубчатых колесах главной передачи

Объект		M	Ресурсные испытания							
	№1	. №2	№3	№4	испытания					
Колесная передача										
MA3-500A	1,0	2,8	3,2	4,0	1,28					
MA3-500A+ + 8926	3,8	13,3	11,1	6 , 8	4, 33					
Центральная передача										
MA3-500A	1,0	1,0	1,1	1,6	1,02					
MA3-500A+ + 8926	1,7	2,5	2,6	1,7	1,75					

Из сказанного вытекает, что темп накопления контактных усталостных повреждений в зубчатых колесах ведущего моста автопоезда в 1,1-1,8 раза выше, чем для автомобиля на всех дорогах. При ресурсных испытаниях темп накопления усталостных повреждений в колесной передаче автомобиля—тягача в 3,41 раза, в центральной передаче — в 1,7 раза выше, чем для одиночного автомобиля.

Литература

1. Типовая программа-методика ускоренных ресурсных испытаний грузовых автомобилей и автопоездов общетранспортно-го назначения. – М., 1975. 2. Яценко Н.Н. Колебания, прочность и форсированные испытания грузовых автомобилей. – М., 1972. 3. Цитович И.С., Вавуло В.А. Методика расчетов долговечности зубчатых колес. – Мн., 1978.

УДК 629.113

В.В.Капустин, В.В.Мочалов

ДОРОЖНЫЕ ИСПЫТАНИЯ ПРОТИВОБЛОКИРОВОЧНОЙ ТОРМОЗНОЙ СИСТЕМЫ АВТОМОБИЛЯ ГРУЗОПОДЪЕМНОСТЬЮ 750 кН В ЗИМНИХ УСЛОВИЯХ КАРЬЕРА

В Белорусском политехническом институте в течение последних пяти лет ведутся работы по созданию противоблокировочной тормозной системы (ПБС) для автомобилей особо большой грузоподъемности с гидравлическим приводом тормозов.

На отдельных этапах теоретических и экспериментальных исследований решались задачи по выбору парамеров ПБС и ее элементов: анализ и обоснование алгоритма управления определение его оптимального функционирования; изучение намики гидравлического тормозного привода в частотном режиме работы ПБС и определение его рабочих характеристик; формализация и разработка элементов ПБС [1-4]. Исследования выявили ряд особенностей динамики управляемого пинэжомот карьерных автомобилей. К основным из них следует значительное перераспределение вертикальных реакций на колеса автомобиля (до 40%), связанное с конструктивными бенностями данного класса автомобилей и предельными углами уклона дорог в карьерах. Это предъявило ряд специфических требований к алгоритму работы ПБС, определению ее элементов и было использовано при разработке системы [5].