Швец И. В., Девойно О. Г. ВЛИЯНИЕ ПАРАМЕТРОВ ЛАЗЕРНОЙ ОБРАБОТКИ СКАНИРУЮЩИМ ЛУЧОМ НА ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ ЗУБЧАТЫХ КОЛЕС ИЗ СТАЛИ 40Х

Белорусский национальный технический университет, Минск, Беларусь

Результаты экспериментов, достигнутые в настоящий момент, позволили формировать прямоугольное пятно лазерного воздействия с градиентами плотности мощности как в поперечном, так и продольном направлении. Это позволяет значительно расширить технологические возможности лазерной обработки. Исходя из полученных экспериментальных результатов, исследованы закономерности формирования упрочненных слоев и точностных параметров боковых поверхностей зубчатых колес в зависимости от варьируемых технологических параметров лазерного сканирующего излучения. Анализ полученных регрессионных зависимостей свидетельствует о том, что на микрогеометрию поверхности зубчатого колеса после лазерной сканирующей обработки оказывают все параметры луча – ширина, скорость и амплитуда, но наибольшее управляющее влияние оказывает ширина луча.

Повышение несущей способности, точности, чистоты поверхности, контактной и изгибной прочности зубчатых передач при снижении затрат на их производство является основой для разработки новых технологических процессов изготовления зубчатых колес, в том числе их технологии упрочнения.

Упрочнение и модифицирование поверхностей сканирующим лучом лазера за счет высокой частоты развертки и возможность управления при этом мощностью излучения позволяет получать так называемое «псевдопятно» лазерного воздействия с заданным распределением энергии по сечению лазерного пятна [1]. При изменение определенных эксплуатационных характеристик требуется оптимизация режимов упрочнения при разработке технологии для конкретных условий нагружения упрочняемой пары зубчатых колес.

Результаты, достигнутые в настоящий момент, позволили формировать прямоугольное пятно с градиентами плотности мощности как в поперечном, так и продольном направлении [2]. При этом технологические возможности лазерной обработки значительно расширяются. Исследованы закономерности формирования упрочненных слоев и точностных параметров боковых поверхностей зубчатых колес в зависимости от варьируемых технологических параметров лазерного сканирующего излучения, исходя из полученных экспериментальных результатов, и разработан процесс развертки сканирующего поля, который позволяет одновременно перемещаться в горизонтальном направлении и смещаться вниз в зависимости от скорости перемещения источника лазерного луча или детали. Лазерная закалка боковых поверхностей зубчатых колес с использованием сканирующего излучения позволит обеспечить оптимальный энерговклад в каждый элемент поверхности и, соответственно, оптимальное распределение свойств согласно распределению факторов износа по рабочей поверхности зубьев.

Все параметры лазерной обработки оказывают влияние на твердость: твердость повышается с увеличением скорости луча и уменьшается с увеличением ширины луча и амплитуды [2]. Также можно определить влияние параметров лазерной закалки на шероховатость поверхности зубчатых колес. Была составлена матрица планирования (таблица данных), в которой определили пределы изменения основных входных параметров: ширина луча лазера (X_3) 0,5–3 мм, амплитуда луча (X_2) 4–8 мм и скорость луча лазера (X_1) от 300 до 1000 мм/мин (табл. 1). Закалка образцов из стали 40Х сканирующим излучением на различных режимах проводилась на оптоволоконном иттербиевом лазере мощностью 2 кВт, эксперименты в каждой точке выполнялись трижды.

Входные параметры	Z _{3,} ширина луча	Z _{2,} амплитуда луча	<i>V</i> , скорость
Размерность входных параметров	MM	ММ	мм/мин
Кодовые значения	X_3	X_2	X_l
X _{max}	3	8	1000
Х _{осн}	1,75	6	650
Х _{мин}	0,5	4	300
ΔX	1,25	2	350

Таблица 1 – Исходные данные для планирования эксперимента

Значения основного уровня переменной есть среднее значение выбранного интервала:

$$X_{OCH} = \frac{X_{MAX} + X_{MUH}}{2},\tag{1}$$

где *X_{мах}* – скорость максимальная, мм/мин, амплитуда и ширина луча максимальные, мм;

X_{мин} – скорость минимальная, мм/мин, амплитуда и ширина луча максимальные, мм;

X_{осн} – среднее значение скорости, мм/мин, амплитуда и ширина луча максимальные, мм.

Интервал варьирования ΔX скорости и давления определяется как максимальное отклонение исследуемых параметров от основного уровня:

$$\Delta X = X_{MAX} - X_{MUH}, \Delta X = X_{OCH} - X_{MUH}.$$
⁽²⁾

Кодовые значения переменных Хі и определяется по формуле:

$$X_i = \frac{\tilde{X} - X_{OCH}}{\Delta X} \,. \tag{3}$$

В этом случае в нормированном виде все исследуемые параметры независимо от их размерности будут изменяться в интервале от -1 до +1. Это дает возможность при получении зависимости $P_x = (x_1, x_2)$ в виде полинома:

$$y = b_0 + \sum_{i=1}^k b_i x_i + \sum_{\substack{i, j \\ i < j}}^k b_{ij} x_i x_j .$$
(4)

По значениям коэффициентов (*b*₀, *b*_{ij}) оценить влияние минимальной и максимальной скорости и минимальных и максимальных амплитуды и ширины.

№ опыта	X_1	X_2	<i>X</i> ₃
1	-1	-1	-1
2	1	-1	-1
3	-1	1	-1
4	1	1	-1
5	-1	-1	1
6	1	-1	1
7	-1	1	1
8	1	1	1

В этой матрице величина (+1) соответствует максимальному значению независимой переменной, а величина (-1) – минимальному значению.

В соответствии с матрицей планирования была выполнена экспериментальная часть работы.

Экспериментальные данные также сводим в табл. 3.

Таблица 3 – Экспериментальные данные шероховатости (параметр *R*_a, мкм, для стали 40*X*, упрочненной лазером)

№ опыта	P_{y1}	P_{y2}	P_{y3}
1	4,48	4,70	4,39
2	4,84	4,93	5,11
3	3,76	3,94	3,85
4	4,48	4,79	4,66
5	3,40	3,16	3,58
6	4,13	3,85	4,21
7	3,40	3,04	3,31
8	3,49	3,76	3,67

Находим среднее значение величины *Р*_ув каждой экспериментальной точке:

$$P_{y} = \frac{P_{y1} + P_{y2} + P_{y3}}{n} = \frac{4,48 + 4,70 + 4,39}{3} = 4,5233,$$
(5)

где *n* – число серий эксперимента.

Определяем дисперсию по строчкам матрицы, например:

$$S_{1}^{2} = \frac{\sum_{i=1}^{n} (Pym_{i} - \overline{P}y_{i})^{2}}{n-1} = (6)$$

$$= \frac{(4,5233 - 4,48)^{2} + (4,5233 - 4,70)^{2} + (4,5233 - 4,39)^{2}}{2} = 0,0254.$$

Проверяем гипотезу об однородности дисперсий с помощью критерия Кохрена по формуле:

$$G = \frac{S_i^2 \max}{\sum_{i=1}^{N} S_i^2} = \frac{0,0444}{0,2108} = 0,2106,$$
(7)

т. е. по отношению наибольшей из дисперсий по строчкам к сумме всех дисперсий. Так как для уровня значимости 5 % и числа степеней свободы f = n-1 = 2 и $f_2 = N = 8$, $(N - число опытов <math>n - G_{\text{табл}} = 0,478 > 0,2106)$, то гипотеза об однородности дисперсий принимается. Величина *G* найдена по таблице.

Дисперсия воспроизводимости равна:

$$S = \frac{\sum_{i=1}^{N} S_i^2}{N} = \frac{0,2108}{8} = 0,0264.$$

Коэффициенты уравнения b_0 , b_1 , b_2 , b_{12} определяем по формулам:

• •

$$b_{0} = \frac{\sum_{i=1}^{N} Y_{i}}{N} = \frac{\ddot{Y}_{1} + \ddot{Y}_{2} + \ddot{Y}_{3} + \dots + \ddot{Y}_{8}}{8} = 4,0388,$$

$$b_{1} = \frac{\sum_{i=1}^{N} X_{i}Y_{i}}{N} = \frac{(-1)\ddot{Y}_{1} + (+1)\ddot{Y}_{2} + (-1)\ddot{Y}_{3} + \dots + (+1)\ddot{Y}_{8}}{8} = 0,2879,$$

$$b_{2} = \frac{\sum_{i=1}^{N} X_{i}Y_{i}}{N} = \frac{(-1)\ddot{Y}_{1} + (-1)\ddot{Y}_{2} + (+1)\ddot{Y}_{3} + \dots + (+1)\ddot{Y}_{8}}{8} = -0,1929,$$

$$\sum_{i=1}^{N} Y_{i} = \frac{(-1)\ddot{Y}_{1} + (-1)\ddot{Y}_{2} + (+1)\ddot{Y}_{3} + \dots + (+1)\ddot{Y}_{8}}{8} = -0,1929,$$

$$b_{12} = \frac{\sum_{i=1}^{N} X_i X_j Y_i}{N} = \frac{(-1)(-1)\ddot{Y_1} + (+1)(-1)\ddot{Y_2} + (-1)(+1)\ddot{Y_3} + \dots + (+1)(+1)\ddot{Y_8}}{8} = -0,4554$$
ит. д

Далее определили дисперсию коэффициентов b, нашли величину критерия Стьюдента для коэффициентов уравнения, определили расчетные значения переменной $Y_i = P_i$

$$Y = 4,0388 + 0,2879X_1 - 0,1929X_2 - 0,4554X_3$$

Затем проверили гипотезу адекватности полученного уравнения результатам эксперимента по критерию Фишера. Перевели уравнение $P_y = f(V, P)$ из нормализованного вида в натуральный. С помощью данной формулы рассчитали зависимость шероховатости от скорости, амплитуды и ширины луча. Полученные данные занесли в табл. 4 и 5.

Амплитуда, мм	Шероховатость, <i>Ra</i> , мкм					
	Скорость луча лазера, V, мм/мин					
	125	300	475	650	825	1000
4	3,75521	3,89917	4,04313	4,18708	4,33104	4,47500
6	3,56229	3,70625	3,85021	3,99417	4,13813	4,28208
8	3,36938	3,51333	3,65729	3,80125	3,94521	4,08917
10	3,17646	3,32042	3,46438	3,60833	3,75229	3,89625

Таблица 4 – Зависимость величины шероховатости от режимов лазерной обработки при ширине луча 0,5 мм

Рис. 1. Поверхность отклика влияния амплитуды и скорости на шероховатость при ширине луча 0,5 мм

Таблица 5 – Зависимость величины шероховатости от режимов лазерной обработки при ширине 3,0 мм

Амплитуда, мм		Ш	Іероховатостн	ь, <i>Ra</i> , мкм		
		Скорс	ость луча лазе	ра, V, мм/мин	-	
	125	300	475	650	825	1000
4	3,34438	3,48833	3,63229	3,77625	3,92021	4,06417
6	3,15146	3,29542	3,43938	3,58333	3,72729	3,87125
8	2,95854	3,10250	3,24646	3,39042	3,53438	3,67833
10	2,76563	2,90958	3,05354	3,19750	3,34146	3,48542

Рис. 2. Поверхность отклика влияния амплитуды и скорости на шероховатость при ширине луча 3,0 мм

Анализ полученных регрессионных зависимостей свидетельствует о том, что на микрогеометрию поверхности зубчатого колеса после лазерной сканирующей обработки оказывают все параметры луча – ширина, скорость и амплитуда, но наибольшее управляющее влияние оказывает ширина луча. Причем, чем больше ширина луча (рис. 1, 2), тем меньше параметр *Ra*. Скорость и амплитуда одинаково влияют на шероховатость в выбранных пределах, но у скорости прямая зависимость, а у амплитуды – обратная. Самая минимальная шероховатость (2,76 мкм) получена при следующих параметрах лазерной сканирующей обработки: V = 125 мм/мин, A = 10 мм, $Z_3 = 3$ мм (табл. 3, рис. 1, 2).

Выявленные зависимости позволили сформировать лазерное пятно, исходя из особенностей адаптивной оптической системы, обеспечивающей реализацию сканирующей обработки, и рекомендовать лазерную закалку в качестве финишной операции при изготовлении зубчатых колес при введении коррекции геометрии зубьев в процессе их формообразования [2].

ЛИТЕРАТУРА

1. Девойно О. Г., Швец И. В. Обеспечение ресурсных параметров ответственных элементов механических трансмиссий с использованием поверхностных слоев, формируемых лазерными технологиями. Теоретическая и прикладная механика: межд. научно-техн. сб. – Мн.: 2019. – Вып. 34. – С. 266–270.

2. Швец И. В., Девойно О. Г., Кардаполова М. А. Оптимизация режимов упрочнения зубчатых колес лазерной закалкой сканирующим излучением / И. В. Швец, О. Г. Девойно, М. А. Кардаполова // Перспективные направления развития технологии машиностроения и металлообработки. Технология – Оборудование – Инструмент – Качество: тезисы докладов 36-ой Международной научно-технической конференции в рамках международной специализированной выставки «Машиностроение/Металлобработка–2022», (Минск, 7 апреля 2022 г.) / редкол.: В. К. Шелег (отв. ред.) [и др.]. – Минск : Бизнесофсет, 2022. – С. 93–95.

3. Швец И. В. Анализ происходящих при лазерной закалке фазовых превращений и их влияние на изменение геометрии эвольвентных профилей зубчатых колес. Инновации в машиностроении: 100-летний опыт в науке, производстве, образовании. Сборник материалов 18-й Междун. науч.-техн. конф. «Наука-образованию, производству, экономике». Электронное научное издание. – Минск : БНТУ, 2021. – С. 33–38.

Поступила 23.11.2023

УДК 621.9.048: 621.373.8: 621.38

Шелег В. К., Шпакевич Д. А., Горбунов А. В., Лапковский А. С., Луцко Н. И. ИССЛЕДОВАНИЕ ПРОЦЕССА ЛАЗЕРНОЙ ОЧИСТКИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ ОТ ПРОДУКТОВ КОРРОЗИИ

Белорусский национальный технический университет, Минск, Беларусь

В последние годы возросла потребность в автоматизации технологий, в частности, лазерных, для очистки металлоизделий от слоев окалины и ржавчины с целью улучшения энергоэффективности обработки. Для выполнения этого целесообразно проводить как расчеты интенсивности нагрева слоев, так и экспериментальную оптимизаиию режимов лазерной очистки (ЛО). В данном исследовании проведено комбинированное определение параметров энергоэффективности ЛО от поверхностной окалины для широко используемого объекта – углеродистых сталей. Было установлено, что в диапазоне скоростей сканирования лазерного луча V от 0,4 до 2,0 м/с практически отсутствует влияние такого входного параметра, как частота импульсов лазерного излучения (ЛИ) f, на измеряемую производительность очистки. Как перспективные для дальнейшего использования изучены режимы ЛО при параметрах: V = 2,0 м/с, диаметр пучка ЛИ на поверхности $d_{LI} = 50$ мкм и частота f = 37 кГц (что задает коэффициент скважности ЛИ S ≈ 200). При этом достигается высокая производительность очистки, при которой за один проход толщина удаляемого слоя близка к 6,5 мкм при средней длительности нагрева каждого участка слоя окалины $t \approx 0.025$ мс. Сделанная кинетическая оценка скорости нагрева слоев окалины в воздушной среде в режиме проплавления окалины под пятном ЛИ (с допущением ее состава как Fe₃O₄) позволила провести анализ эмпирических параметров очистки и он выявил, что энергозатраты для оптимального экспериментального режима и одного из расчетных режимов (отличающегося тем, что рассмотрен стационарный лазер СШ-типа) несколько различаются и равны 4,0 и 2,7 кВтч/(кг окалины), соответственно.

Введение и задача исследования. Удаление окалины и ржавчины с помощью современных физико-технических методов, в частности, лазерных, как потенциально высокоэффективный и экологически чистый метод очистки корродированных металлических поверхностей, в последнее десятилетие активно изучается и постепенно внедряется в машиностроительной, судостроительной, горнодобывающей и других отраслях [1–10]. Однако пока эффективность данной группы технологий лазерной очистки (ЛО) признается сильно зависимой от эмпирических навыков операторов лазерных установок по распознаванию изменений в условиях удаления данных оксидных загрязнений, связанных с