Время срабатывания привода, полученное по модели с распределенными параметрами, отличается от экспериментальных значений на 6,7 % при $l_{\rm TP}=5$ м ($A_{\rm TP}=0.137\cdot10^{-3}$ м²) и на 10 % при $l_{\rm TP}=20$ м, перерегулирование давления в колесных тормозных цилиндрах — соответственно на 3,8 % при $l_{\rm TP}=5$ м и на 3,4 % при $l_{\rm TP}=20$ м. Кроме того, исследование привода по этой модели позволяет дать количественную оценку как низкочастотных, так и высокочастотных колебаний жидкости в гидроприводе.

Таким образом, предлагаемая методика динамического расчета гидравлического тормозного привода на основе математической модели с распределенными параметрами дает хорошую сходимость с результатами экспериментальных исследований и может применяться при исследовании гидравлических тормозных приводов с длиной магистралей свыше 10 м.

ЛИТЕРАТУРА

1. Венгерский Э.В., Морозов В.А., Усов Г.Л. Гидродинамика двухфазных потоков в системах питания энергетических установок. — М., 1982. — 128 с. 2. Метлюк Н.Ф., Автушко В.П. Динамика пневматических и гидравлических приводов автомобилей. — М., 1980. — 231 с. 3. Самарский А.А., Попов Ю.П. Разностные схемы газовой динамики. — М., 1975. — 352 с. 4. Инженерные расчеты на ЭВМ/Под ред. В.А. Троицкого. — Л., 1979. — 288 с.

УДК 629.113-585-52

О.С. РУКТЕШЕЛЬ, канд. техн.наук (БПИ)

АВТОМАТИЗАЦИЯ СИНТЕЗА ФУНКЦИОНАЛЬНОЙ СТРУКТУРЫ СИСТЕМЫ АВТОМАТИЧЕСКОГО ПЕРЕКЛЮЧЕНИЯ ПЕРЕДАЧ

Понятие структуры системы автоматического переключения передач (САПП) предполагает частичную упорядоченность ее элементов относительно друг друга как в смысле их размещения по физическим узлам и уровням, так и в смысле решаемых ими функциональных задач процесса управления, т.е. речь может идти как о композиционной, так и о функциональной структуре САПП [1].

Ниже формулируется частная задача синтеза функциональной структуры САПП, решение которой позволяет оценить правильность принимаемых на интуитивном уровне решений об общей структуре САПП, наметить перспективные пути решения общей задачи и выделить область наиболее целесообразных вариантов построения всей САПП.

Функциональная структура САПП определяется ее информационными параметрами [2]. Реализация информационного сигнала в общем случае осуществляется в цепи: чувствительный элемент — датчик — промежуточный преобразователь — канал связи — измеритель — функциональный преобразователь — устройство обработки сигнала — функциональный преобразователь — канал связи — исполнительный блок. Если для увеличения надежности САПП применяются двухканальные (дуплексные) системы, в которых содержатся два идентичных канала и предусматривается сравнение их выходов, или триплекс-

ные системы с перекрестно-канальным сравнением сигналов и отключением неисправного канала, то структура САПП еще более усложняется.

Задача синтеза функциональной структуры САПП может быть формализована следующим образом.

Пусть имеется некоторое допустимое множество информационных параметров $\overline{U}=\left\{u_{j}\mid j\in \overline{J}\right\}$ и допустимое множество вариантов их организации (структур) $\overline{s}=\left\{s_{i}\mid i\in \overline{I}\right\}$. Тогда $\overline{D}=(\overline{d}_{ij})$ — матрица, отражающая допустимую взаимосвязь структур и обрабатываемых информационных параметров, представляется в виде: $\overline{d}_{ij}=1$,если информационный параметр u_{j} связан со структурой s_{i} , и $\overline{d}_{ij}=0$ — в противном случае. Для выбора оптимальной структуры следует ввести определенные требования к совокупности информационных параметров, т.е. фиксировать некоторое подмножество $U=\left\{u_{j}\mid j\in J\subset \overline{J}\right\}$ множества \overline{U} и сделать предположения о некотором предпочтении структуры s_{i} перед s_{i+1} .

Вид вектора информационных параметров, их количество и взаимосвязь определяют как эффективность использования автомобиля, так и стоимость и степень сложности построения САПП. Поэтому выбор структуры САПП является не только технической, но и экономической задачей.

Оптимальной будем считать такую структуру САПП, при которой она обеспечивает в типичных условиях эксплуатации автомобиля минимум народнохозяйственных затрат на осуществление в заданный срок необходимого объема перевозок или эквивалентную им минимальную удельную себестоимость использования автомобиля C_{vri} [3]:

$$C_{VII} = \varphi(S) \rightarrow \min \forall S \in \overline{S}$$
.

Целевую функцию $\varphi(S)$ следует минимизировать, варьируя вектор управляемых параметров (вектор вариантов структур) $S=(s_1,...,s_k)^{\mathrm{T}}$ в пределах допустимого множества структур \overline{S} .

пустимого множества структур \overline{S} .

Решением задачи структурной оптимизации является структура s_i , где $i=\overline{1,k}$, доставляющая минимум критерию эффективности $C_{yz}=\varphi(S)$:

$$\varphi(s_i^*) = \min \varphi(s) \forall S \in \overline{S} . \tag{2}$$

Вектор допустимого множества вариантов структур \overline{S} формируется из элементов допустимого множества информационных параметров

$$\begin{split} \overline{U} &= \left(\boldsymbol{v}_{\mathrm{a}} \;, \boldsymbol{\alpha}_{\mathrm{\Pi}}, \boldsymbol{M}_{\mathrm{\Pi}}, \; \boldsymbol{\omega}_{\mathrm{\Pi}}, \boldsymbol{h}_{\mathrm{p}}, \boldsymbol{\dot{v}}_{\mathrm{a}}, \boldsymbol{\dot{\alpha}}_{\mathrm{\Pi}}, \boldsymbol{\dot{\omega}}_{\mathrm{\Pi}}, \boldsymbol{n}_{\mathrm{\Pi}}, \boldsymbol{H}_{\mathrm{B}} \;, \boldsymbol{\mathrm{C}}_{\mathrm{c}}, \boldsymbol{\beta}_{\mathrm{T}} \;, \\ \operatorname{sign} \boldsymbol{\dot{v}}_{\mathrm{a}}, \boldsymbol{t}_{\mathrm{\Pi}}, \operatorname{sign} \boldsymbol{\alpha}_{\mathrm{\Pi}} \;, \operatorname{sign} \boldsymbol{\Delta} \boldsymbol{G}_{\mathrm{T}} \;, \; \boldsymbol{\theta}_{\mathrm{K}} \right)^{\mathrm{T}} \;, \end{split}$$

где $v_{\rm a}$, $\dot{v}_{\rm a}$ — соответственно скорость и ускорение автомобиля; $a_{\rm g}$, $\dot{a}_{\rm g}$ — перемещение и скорость перемещения педали управления двигателем; $M_{\rm g}$, $\omega_{\rm g}$, $\dot{\omega}_{\rm g}$ и $t_{\rm g}$ — крутящий момент, угловая скорость, ускорение и температура — двигателя; $h_{\rm p}$ — положение рейки топливного насоса; $n_{\rm g}$ и $H_{\rm g}$ — номер передачи и нейтраль в коробке передач; ${\rm C_c}$ — выключенное состояние сцепления; $\beta_{\rm g}$ — нажатие на педаль ножного тормоза; $\Delta G_{\rm g}$ — разность часовых расходов топлина на смежных передачах; $\theta_{\rm g}$ — угол поворота управляемого колеса.

Для простоты и удобства автоматического формирования структур САПП вводим булевы переменные — ключи K_i , где $i=\overline{1,7};$ при этом $K_i=1$ V0.

Если $K_1=1$, структура САПП предусматривает возможность выбора момента переключения передач по равенству линейных ускорений на смежных передачах; при этом анализируются параметры $\dot{\nu}_a$, ω_π и α_π .

При ${
m K_2}=1$ выбор момента переключения осуществляется по достижении автомобилем заданной пороговой скорости без учета загрузки двигателя. В этом случае предусматривается обработка параметров v_a и ω_n .

Если $K_3=1$, САПП вырабатывает сигнал на переключение передач исходя из скорости автомобиля с учетом загрузки двигателя. Для этого обрабатываются такие параметры, как ν_a , ω_n и α_n .

Если ${\rm K_4}$, ${\rm K_5}$ или ${\rm K_6}$ равен единице, то для корректировки закона переключения передач (ЗПП) структура САПП предусматривает соответственно обработку таких информационных параметров, как \dot{v}_a , ${\rm sign}\,\dot{v}_a$ или ${\rm sign}\Delta\,{\it G}_{\rm T}$. При ${\rm K}_7=1$ анализируется параметр $H_{\rm R}$ (движение автомобиля накатом).

Если $K_j = 0$ (ключ закрыт), соответствующие совокупности информационных параметров данной САПП не обрабатываются.

Совокупность элементов булева вектора $K = (K_1, ..., K_n)^T$ позволяет задать необходимый закон функционирования САПП и тем самым определить набор информационных параметров, а следовательно, и вариант функциональной структуры проектируемой САПП. Последнюю можно представить в виде булевой функции $s_i = f_i$ (K), $i = 1, \overline{k}$, а комплекс структур S — в виде булевой матрицы (табл. 1).

Табл. 1. Отображение множества функциональных структур САПП на множество законов переключения передач

s _i	K ₁	K ₂	Кз	К ₄	К ₅	К ₆	К ₇	ЗПП и их модификации
1	2	3	4	5	6	7	8	9
s ₁	1	0	0	0	0	0	0	По равенству линей- ных ускорений автомо- биля
s 2	1	0	0	0	0	0	1	
83	1	0	0	0	0	1	0	
. s ₄	1	0	0	0	0	1	1	
<i>s</i> ₅	0	1	0	0	0	0	0	По скорости автомо- биля
86	0	1	0	0	0	0	1	
s ₇	0	1	0	0	0	1	0	
8	0	1	0	0	0	1	1	
8 9	0	1	0	0	1	0	0	
⁸ 10	0	1	0	0	1	0	1	
s 11	0	1	0	0	1	1	0	
⁸ 12	0	1	0	0	1	1	1	

1	2	3	4	5	6	7	8	9
s ₁₃	0	1	0	1	0	0	0	
^S 14	0	1	0	1	0	0	1	
⁸ 15	0	1	0	1	0	1	0	
^S 16		1	0	1	0	1	1	
s 17	0	1	0	1	1	0	0	
⁸ 18	0	1	0	1	1	0	1	
⁵ 19	0 .	1	0	1	1	1	0	
^S 20	0	1	0	1	1	1	1	
s ₂₁	0	0	1	0	0	0	0	По скорости автомо- биля и загрузке двигате- ля
s ₂₂	0	0	1	0	0	0	1	
s ₂₃	0	0	1	0	0	1	0	
^S 24	0	0	1	0	0	1	1	
S 25	0	0	1	0	1	0	0	
S 26	0	0	1	0	1	0	1	
s ₂₇	0	0	1	0	1	1	0	
S 28	0	0	1	0	1	1	1	
S 29	0	0	1	1	0	0	0	
830	0	0	1	1	0	0	1	
S 3 1	0	0	1	1	0	1	0	
S ₃₂	0	0	1	1	0	1	1	
^S 33	0	0	1	1	1	0	0	
s ₃₄	0	0	1	1	1	0	1	
S ₃₅	0	0	1	1	1	1	0	
⁸ 36	0	0	1	1	1	1	1	

Для автоматизированного определения оптимальной структуры САПП разработан комплекс алгоритмов, который включает в себя в качестве подкомплекса алгоритмы имитационного моделирования процесса движения автомобиля, а также алгоритмы формирования структур и поиска оптимальной структуры САПП (рис. 1). Логика алгоритма формирования структур САПП сводится к построению комбинационного автомата [4], задачей которого является присваивание элементам булева вектора К значений в соответствии с заданной булевой матрицей (см. табл. 1), Комплекс алгоритмов синтеза структуры САПП реализован в виде пакета прикладных программ.

Синтез структуры САПП ведется в интерактивном (диалоговом) режиме. При этом проектировщик в зависимости от вида трансмиссии и назначения автомобиля производит коммутацию соответствующих компонентов из комплекса программ имитационного моделирования процесса движения автомобиля, а также из числа типизированных маршрутов и внешних воздействий.

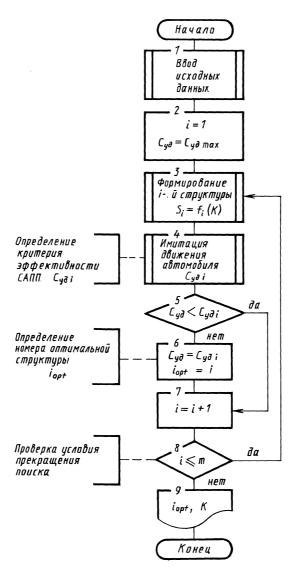


Рис. 1. Схема общего алгоритма синтеза функциональной структуры САПП

ЛИТЕРАТУРА

1. Руктешель О.С. Задачи и организация оптимального проектирования систем автоматического переключения передач. — Минск, 1983.—27 с. Рукопись деп. в БелНИИНТИ 12. 08.83, № 789 Бе-Д83. 2. Руктешель О.С., Эль Камиль Хамид. Информационные параметры системы автоматического управления силовым агрегатом автомобиля. — В кн.: Автотракторостроение. — Минск, 1985, вып. 20, с. 25—29. 3. Токаре В А.А. Топливная экономичность и тягово-скоростные качества автомобиля. — М., 1982. — 224 с. 4. Закревский А.Д. Алгоритмы синтеза дискретных автоматов. — М., 1971. — 512 с.

УДК 629.113

Л.Е. ТАУБЕС (БПИ)

МОДЕЛИРОВАНИЕ НА ЭВМ И РАСЧЕТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПАРАМЕТРОВ АВТОМОБИЛЯ С ГИДРОМЕХАНИЧЕСКОЙ ТРАНСМИССИЕЙ

При проектировании новых и совершенствовании конструкций находящихся в эксплуатации автомобилей необходимо оценивать расчетными методами их технико-экономические показатели. Для этой цели на кафедре "Автомобили" Белорусского политехнического института был разработан комплекс программ по моделированию на ЭВМ режимов движения автомобиля в разных дорожных условиях, оценке показателей нагруженности и надежности трансмиссии автомобиля с учетом влияния макро- и микропрофиля дороги, неравномерности работы двигателя, динамических нагрузок, возникающих в трансмиссии при трогании автомобиля с места и переключении передач [1,2]. Он дополнен программой расчета режимов движения и технико-экономических параметров автомобиля с гидромеханической трансмиссией.

Исходными данными для расчета являются параметры автомобиля, двигателя, согласующего редуктора, гидротрансформатора, коробки передач, раздаточной коробки, ведущих мостов и дороги. Дорожные условия описываются ступенчатой функцией коэффициентов сопротивления, уклонов, допустимой скорости движения от координаты пути.

Движение автомобиля начинается с трогания на низшей передаче. Дальнейший режим определяется дорожными условиями. Автомобиль может двигаться в режиме, соответствующем внешней или частичной характеристике двигателя, при работающем или заблокированном гидротрансформаторе. В результате работы программы определяются: характеристика совместной работы гидротрансформатора с двигателем; график "путь—время" при заданном шаге изменения пути; мгновенные время, путь и скорость при переключении передачи и блокировке трансформатора; общая продолжительность движения по маршруту; пройденный путь; средняя скорость на маршруте; расход и средний расход топлива на маршруте на 100 км пути.

Параметры режима движения на маршруте систематизируются и сводятся в статистические таблицы, которые затем используются для оценки уровня нагруженности деталей трансмиссии. Определяются следующие статистические параметры: доля пути и времени движения на каждой передаче; число пере-