тация автомобилей и тракторов. Мн., 1989. Вып. 4, 3. *Войтиков А.В.* Исследование курсовой устойчивости колесного трактора класса 14 кН на склоне: Дис. ... канд. техн. наук. Мн., 1979.

УДК 631.372.012.5:631.43.001.5

Г.С.ГОРИН, д-р техн. наук (БИМСХ)

КИНЕМАТИКА СТАТИЧЕСКОГО ПОВОРОТА ТЯГОВОГО СРЕДСТВА

Статическим называется установившийся поворот тягового средства [1]. В общем случае система сил, действующих на каждое колесо, приводится к главному вектору и главному моменту. При больших внешних воздействиях колесо катится с продольным и боковым скольжением, а также с угловым смещением (поворотом) контактного отпечатка (вокруг оси, нормальной к опорной поверхности). Как показали исследования, названные угловые смещения при повороте тягового средства могут быть достаточно большими.

Экспериментальные исследования выполнены на мобильной установке с одинаковыми колесами 11,2/10-28 массой 5200 кг [2]. В процессе эксперимента изменяли коэффициент распределения нагрузки по осям λ , коэффициент кинематического несоответствия в межосевом приводе K_{ν} , тяговую нагрузку $F_{\kappa p}$, углы поворота управляемых колес a_{j} . С помощью специальной аппаратуры замеряли основные кинематические и динамические показатели поворота. В числе других показателей определяли суммарные углы увода каждого колеса $\theta_{6,n}$ и боковые силы F_{6j} . Полагая известными коэффициенты бокового увода колес при заданной нормальной нагрузке, находили углы бокового увода θ_{6j} и углы поворота контактных отпечатков $\theta_{nj}=\theta_{6,n}$; \pm θ_{6j} .

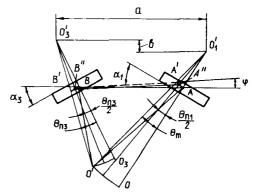
Установлено, что при кинематическом опережении передних колес $K_v=1,05,~\lambda=0,4$ (доля нагрузки на передние колеса), $a_1=20^{\circ},~a_2=24^{\circ},~a_3=0,~a_4=0$ и $F_{\rm Kp}=0$ углы увода θ_{6i} находятся в пределах от 0,6° до 1°, а $\theta_{ni}=0$ от $-7,5^{\circ}$ до $-10,7^{\circ}$; если $F_{\rm Kp}=12$ кН и $\gamma=9,7^{\circ},~\theta_{6i}=-0,8^{\circ}...-5,71^{\circ},~\theta_{ni}=-17^{\circ}...-20^{\circ}$ (γ — угол отклонения направления тягового усилия от продольной оси).

При λ = 0,4 для той же схемы поворота (a_1 = 20°, a_2 = 24°, a_3 = 0, a_4 = 0) и $F_{\rm Kp}$ = 0 θ_{6j} = -0,33°...+2,7°, θ_{nj} = -2,8°...-3,4°; если $F_{\rm Kp}$ = 8 кН и γ = 7,2°, то θ_{6j} = -4,5°...1,8°, а θ_{nj} -3,9°...-4,1°.

Аналогично в больших пределах изменялись углы $\theta_{n,i}$ (от $7^{o}...10^{o}$ при $F_{\text{KP}}=0$ и $K_{_{V}}=1,05$ до $1,5^{o}...2,5^{o}$ при $F_{\text{KP}}=12$ кH) при увеличении коэффициента распределения нагрузки до $\lambda=0,6$ и углах поворота задних колес $a_{_{1}}=20^{o}$, $a_{_{2}}=24^{o}$. Таким образом, пренебрежение углами $\theta_{_{1}}$, при анализе поворачиваемости тяговых средств приводит к большим погрешностям. В [2] для определения углов $\theta_{_{1}}$, использованы приближенные зависимости.

Известные аналитические модели поворота тяговых средств и МТА в большинстве построены на основе схемы чистого качения колеса с боковым уводом. При исследовании поворачиваемости тяговых средств с бортовым

Рис. 1. Плоская расчетная схема поворота тягового средства с буксованием и угловым смещением колес



поворотом используют расчетную схему чистого скольжения колеса (без качения). В настоящей работе рассмотрены модели поворота тяговых средств, основанные на расчетной схеме колеса с тремя степенями свободы (при качении колеса с угловым смещением и боковым уводом имеют место поворот колеса вокруг горизонтальной и вертикальной осей, а также боковое скольжение). Этот подход позволяет использовать рациональные элементы теории качения колеса с уводом и математической теории трения.

Показано, что центр вращения в общем случае не совпадает с центром контакта. Получены выражения для продольного и поперечного смещений (эксцентриситетов) центров вращения относительно центра пятна контакта при трении без качения [1]. При качении с буксованием поперечное смещение центра вращения [3]

$$r_i = R_i \, \delta_i / (1 - \delta_i) \, ,$$

где $R_{j'}$ δ_j — соответственно радиус поворота и коэффициент буксования i-го колеса.

Согласно кинематической схеме поворота ходовой системы с угловым смещением колес (рис. 1), обкатывание колес (i=1,2,3,4) может происходить вокруг центров скоростей трения O_i' , расположенных на расстояниях r_i от плоскостей симметрии колес, либо вокруг центров скоростей качения O_{ij} , удаленных на R_i от упомянутых плоскостей. Пусть в обращенном движении под действием отклоняющих моментов колеса вращаются вокруг центров O_1' и O_3' и имеют угловые смещения θ_{n1} и θ_{n3} . Центр скоростей ходовой системы найдем, проведя дуги окружностей радиусами $O_1'O_1$ и $O_3'O_3$ до пересечения их в точке O. При этом ходовая система отклоняется от первоначального положения на угол φ , а ее продольная ось занимает направление A'B'. Пусть $O_1'A = r_1$ и $O_3'B = r_3$.

В соответствии с рис. 1

$$r_1\cos a_1 - r_3\cos a_3 = b,$$

 $r_1\sin a_1 + r_3\sin a_3 + L = a;$ (1)

$$r_{1}\cos(a_{1} + \theta_{n1}) - r_{3}\cos(a_{3} - \theta_{n3}) + L\sin\varphi = b, r_{1}\sin(a_{1} + \theta_{n1}) + r_{3}\sin(a_{3} - \theta_{n3}) + L\cos\varphi = a.$$
 (2)

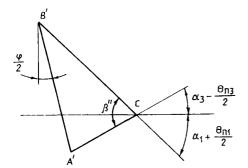


Рис. 2. К выводу зависимости между кинематическими показателями поворота колес одного борта

После преобразований уравнений (1) и (2) получим:

$$r_1^2(1-\cos\theta_{n1}) + r_3^2(1-\cos\theta_{n3}) + r_1r_3(\cos(a_1+\theta_{n1}+a_3) + \cos(a_1+a_3-\theta_{n3}) - \cos(a_1+\theta_{n1}+a_3-\theta_{n3}) - \cos(a_1+a_3)) =$$

$$= L^2(1-\cos\varphi).$$

`Поскольку $\cos(a_1 + \theta_{n1} + a_3) + \cos(a_1 + a_3 - \theta_{n3}) = 2\cos(a_1 + a_3 + (\theta_{n1} + \theta_{n3})/2) \cdot \cos((\theta_{n1} + \theta_{n3})/2)$,

$$r_1^2 \cos^2(\theta_{n1}/2) + r_3^2 \cos^2(\theta_{n3}/2) - 2r_1 r_3 \sin(\theta_{n1}/2) \cdot \sin(\theta_{n3}/2) \times \cos(a_1 + a_3 + (\theta_{n1} + \theta_{n3})/2) = L^2 \sin^2(\varphi/2)$$
.

Полученное выражение — запись теоремы косинусов для треугольника со сторонами $r_1\cos(\theta_{n,1}/2)$, $r_3\cos(\theta_{n,3}/2)$, $L\sin(\varphi/2)$.

Разделим дуги AA' и BB' на рис. 1 пополам и соединим полученные точки A'' и B'' отрезком $A''B'\cong L$. Отложим из точки C отрезок $B'B''=R_1\sin(\theta_{n1}/2)$ под углом $a_1+\theta_{n1}/2$ к горизонтали (рис. 2), а отрезок $A'A''=R_3\sin(\theta_{n3}/2)$ — под углом $a_3-\theta_{n3}/2$. Соединяя концы отложенных отрезков прямой A'B', получаем $\Delta CA'B'$ с углом $\beta''=a_1+\theta_{n1}/2+a_3-\theta_{n1}/2$ при вершине C. Угол B'A'C при вершине A' равен $\pi/2-a_3+\theta_{n3}/2+\varphi/2$, а угол A'B'C при вершине $B'-\pi/2-a_1-\theta_{n1}/2-\varphi/2$. Длина стороны треугольника, противолежащей вершине C, $A'B'=L\sin(\varphi/2)$, N_3 $\Delta CA'B'$ следует, что

$$\frac{L\sin(\theta_{\pi 1}/2)}{\sin\beta''} = \frac{r_1\sin(\theta_{\pi 1}/2)}{\sin(\pi/2 - a_3 + \theta_{\pi 3}/2 + \varphi/2)} = \frac{r_3\sin(\theta_{\pi 3}/2)}{\sin(\pi/2 - a_1 - \theta_{\pi 1} - \varphi/2)} \cdot$$
(3)

Согласно рис. 2,

$$r_{1}\sin(\theta_{\pi 1}/2) = R_{1}\sin(\varphi_{1}/2); \ r_{3}\sin(\theta_{\pi 3}/2) = R_{3}\sin(\varphi_{3}/2);$$

$$R_{\pi 1} = L/(\operatorname{tg}\beta''\cdot\cos(\alpha_{1}+\theta_{\pi 1}/2+\varphi/2));$$

$$R_{\pi 3} = L/(\operatorname{tg}\beta''\cdot\cos(\alpha_{3}-\theta_{\pi 3}/2-\varphi/2)).$$

$$(4)$$

Подстановкой выражений (4) в (3) получаем, что $\varphi_1 \approx \varphi_2$.

Анализ результатов экспериментальных исследований показываєт, что, если касательные силы тяги всех колес положительны, как правило, углы $\theta_{\rm n}$ для всех колес практически одинаковы. Это облегчает проведение аналитических исследований.

В общем случае при повороте ходовой системы необходимо рассматривать качение, буксование, боковое скольжение и угловое смещение колес. Приведем две расчетные схемы.

Допустим, что центр вращения первого колеса (i=1) расположен в точке O_1'' , которую находим суммированием радиусов-векторов скоростей скольжения (рис. 3, a) : $\overline{O_1''A} = \overline{AO_1'} + \overline{O_1''O_1'}$. Новое положение радиуса-вектора в результате углового смещения колеса соответствует повороту отрезка $O_1''A$ на угол θ_{n1} . Выполнив аналогичные построения для третьего колеса (i=3), найдем центр скоростей O_3'' и новое положение остова ходовой системы A'B'.

Вторую расчетную схему получим следующим образом. Из центров O_1' и O_3' проводим радиусами $O_1'O_1$ и $O_3'O_3$ засечки и, отложив углы $\theta_{\Pi 1}$ и $\theta_{\Pi 3}'$ получаем соответственно точки O_1'' и O_3'' (рис. 3, 6). Из этих точек восстанавливаем перпендикуляры до пересечения их в точке O — мгновенном центре скоростей ходовой системы. При этом $tg\theta_{61} = OO_1''/O''A'$, $tg\theta_{63} = OO_3''/O_3''B'$.

Анализ показывает, что вторая расчетная схема лучше согласуется с экспериментальными данными. Объясняется это существенной анизотропией свойств колеса: при перемещении его в плоскости качения $f_{\kappa} \neq 0,04-0,2,$ а в боковом направлении — $\mu_c = 1-3$. Если центры вращения O_1' и O_3' (см. рис. 3, а) расположены на горизонтальной оси, система приходит в состояние устойчивого равновесия с минимальной работой сил трения, так как ее поворот осуществляется путем обкатывания и углового смещения колес вокруг упомянутых центров.

В пространственной расчетной схеме на соотношение кинематических показателей поворота накладываются дополнительные ограничения. Действительная скорость колеса $v_{n,i} = v_i (1 - \delta_i)$. Тогда

$$\begin{aligned} v_{A1}\sin(a_{1} - \theta_{6,n1}) &= v_{A2}\sin(a_{2} - \theta_{6,n2}); \\ v_{A1}\cos(a_{1} - \theta_{6,n1}) &= v_{A3}\cos(a_{3} + \theta_{6,n3}); \\ v_{A3}\sin(a_{3} + \theta_{6,n3}) &= v_{A4}\sin(a_{4} + \theta_{6,n4}); \\ v_{A2}\cos(a_{2} - \theta_{6,n2}) &= v_{A4}\cos(a_{4} + \theta_{6,n4}). \end{aligned}$$
 (5)

Из уравнений (5) следует, что

$$tg(a_1 - \theta_{6,\Pi 1}) \cdot tg(a_4 + \theta_{6,\Pi 4}) = tg(a_2 - \theta_{6,\Pi 2}) \cdot tg(a_3 + \theta_{6,\Pi 3}). \tag{6}$$

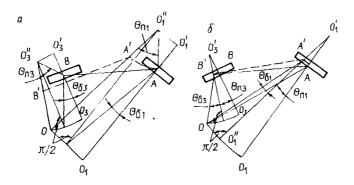


Рис. 3. Плоские расчетные схемы с учетом буксования, углового смещения и бокового увода колес:

a — центры вращения колес совпадают с центрами их скольжения; δ ~центры вращения колес находятся на осях вращения

Установим также соотношения, связывающие кинематические показатели при повороте тягового средства с буксованием колес. Коэффициент кинематического несоответствия окружных скоростей передних и задних колес

$$K_{\nu} = (v_1 + v_2)/(v_3 + v_4).$$

Так как при повороте с боковым уводом колеса

$$v_i = \omega_{\rm B} R_i / ((1 - \delta_i) \cos \theta_{6i})$$

 $\{\omega_{_{\mathbf{B}}}$ — угловая скорость поворота тягового средства вокруг мгновенного центра скоростей),

$$K_{\nu} = \frac{R_{1}/((1-\delta_{1})\cos\theta_{61}) + R_{2}/((1-\delta_{2})\cos\theta_{62})}{R_{3}/((1-\delta_{3})\cos\theta_{63}) + R_{4}/((1-\delta_{4})\cos\theta_{64})} . \tag{7}$$

Уравнения кинематики (6) и (7) в сочетании с уравнениями динамики позволяют аналитически рассчитать углы поворота $\theta_{n\,i'}$ обусловленного дополнительными степенями свободы при качении колеса.

Список литературы

1. Опейко Ф.А. Колесный и гусеничный ход. Мн., 1960. 2. Кацыгин В.В. и др. Перспективные мобильные энергетические средства (МЭС) для сельскохозяйственного производства. Мн., 1984. 3. Давыдик И.И. Исследование статического поворота гусеничного хода: Дис. ... канд. техн. наук. Мн., 1971.