нении грунтов под нагрузкой // Прикладная механика и теоретическая физика. — 1961. — № 1. — 31 с. 5. Цытович Н.А. и др. Экспериментальные исследования порового давления в водонасыщенных грунтах // Строительство на слабых грунтах. — Рига. — 1970. — 74 с. 6. Соболевский С.В., Павловец В.В. К вопросу о начальном напряженном состоянии анизотропного водонасыщенного основания // Водное хоз-во и гидротехнич. стр-во. — 1988. — Вып. 17. — 213 с. 7. Лехницкий С.Г. Теория упругости анизотропного тела. — М.; Л. — 1950. — 299 с. 8. Герсеванов Н.М. Основы динамики грунтовой массы. — М. — 1937. — 241 с. 9. Соболевский Ю.А. Водонасыщенные откосы и основания. — Мн. — 1975. — 398 с. 10. Полубарино ва-Кочина П.Я. Теория движения грунтовых вод. — М. — 1977. — 664 с.

УДК 624.131.52

н.д. банников

РАСПРЕДЕЛЕНИЕ ИЗБЫТОЧНЫХ НАПОРОВ И НАПРЯЖЕНИЙ ВО ВРЕМЕНИ В ТРАНСВЕРСАЛЬНО-ИЗОТРОПНЫХ ОСНОВАНИЯХ ПРИ ИХ ЗАГРУЖЕНИИ

При строительстве гидротехнических сооружений часто в качестве оснований используют водонасыщенные грунты, которые имеют различные деформативные характеристики в горизонтальном E_x и вертикальном E_z направлениях. Такие грунты принято называть трансверсально-изотропными. К ним относятся ленточные глины, лессовые и торфяные отложения. По данным исследователей, отношение модулей деформации их ($n=E_x/E_z$) колеблется в пределах 1-1.5...2.

Наличие механической анизотропии вносит коррективы в напряженно-деформируемое состояние таких оснований, и протекающие процессы должны отличаться от изотропных. Идет поиск расчетных зависимостей, учитывающих эти особенности грунтов.

Одной из важнейших задач является умение прогнозировать избыточные напоры, которые возникают в таких основаниях при их мгновенном загружении. При изучении этого вопроса нами рассмотрены следующие уравнения:

$$\boldsymbol{\epsilon}_{\mathbf{x}} = \boldsymbol{\beta}_{11} \boldsymbol{\sigma}_{\mathbf{x}} + \boldsymbol{\beta}_{12} \boldsymbol{\sigma}_{\mathbf{z}}; \tag{1}$$

$$\boldsymbol{\epsilon}_{z} = \boldsymbol{\beta}_{12} \boldsymbol{\sigma}_{x} + \boldsymbol{\beta}_{22} \boldsymbol{\sigma}_{z}; \tag{2}$$

$$\sigma_{x} = \sigma_{x}^{*} - \gamma_{w}H; \ \sigma_{z} = \sigma_{z}^{*} - \gamma_{w}H; \tag{3}$$

$$\frac{\partial e}{\partial t} = (1 + e_0) \left(k_x \frac{\partial^2 \mathbf{H}}{\partial x^2} + k_z \frac{\partial^2 \mathbf{H}}{\partial z^2} \right); \tag{4}$$

$$\epsilon_{y} = \epsilon_{x} + \epsilon_{z} = (e_{0} - e)/(1 + e_{0}), \tag{5}$$

где ϵ_x , ϵ_z — относительные деформации в направлении осей x и z ; $\beta_{11} = (1-$

$$-\nu_1^2)/E_x; \ \beta_{22} = (1 - \nu_2^2 \frac{E_x}{E_z})/E_z; \ \beta_{12} = -\nu_2 (1 + \nu_1)/E_z; \ \sigma_x^*, \sigma_z^* - \text{hop-}$$

мальные стабилизированные конечные напряжения в скелете грунта после рассеивания избыточных напоров, мПа; γ_w — удельный вес воды, мН/м³; k_x , k_z — коэффициенты фильтрации соответственно в горизонтальном и вертикальном направлениях, м/с; H— избыточные напоры в поровой воде для любого момента времени, м; e_0 , e — коэффициенты пористости для начального состояния и на любой момент времени; ν_1 — коэффициент Пуассона, характеризующий поперечные изменения в плоскости изотропии для нагрузок в той же плоскости; ν_2 — то же, для нагрузок по направлению, нормальному к плоскости изотропии; E_x , E_z — модули общих деформаций для плоскости изотропии и перпендикулярной к ней, мПа.

Уравнения (1), (2) применяются в теории упругости [1] для оценки напряженного состояния трансверсально-изотропного основания. В случае, если грунты водонасыщены, к этим выражениям необходимо добавить уравнения Флорина (3) и (4), так как нагрузка на скелет грунта передается по мере оттока воды.

Однако приведенных уравнений недостаточно, потому что неизвестна связь приращения коэффициента пористости и избыточного напора во времени. Для решения этого вопроса нами было введено выражение (5). Тогда после дифференцирования уравнений (1)...(3) по времени и подстановки их в (5), получили

$$\frac{\partial e}{\partial t} = (1 + e) \gamma_w \left(\beta_{11} + 2\beta_{12} + \beta_{22} \right) \frac{\partial H}{\partial t} . \tag{6}$$

Объединив уравнения (4) и (6), нашли

$$\frac{\partial H}{\partial t} = \frac{E_z}{\gamma_w B} \left(k_x \frac{\partial^2 H}{\partial x^2} + k_z \frac{\partial^2 H}{\partial z^2} \right), \tag{7}$$

где
$$B = \frac{1 - \nu_1^2}{n} - 2\nu_2 (1 + \nu_1) - \nu_2^2 n + 1.$$

В (1), (2) и (7) от свободного модуля общей деформации перешли к компрессионному при условии, что уплотняющая нагрузка прикладывалась перпендикулярно к слоистости основания, Тогда

$$E_z = (1 + e_0) (1 - 2\lambda v_2) / C_{cz} , \qquad (8)$$

где
$$C_{cz} = (e_0 - e)/P - P_0$$
); $\lambda = n\nu_2/(1-\nu_1)$.

С учетом (8) уравнение консолидации трансверсально-изотропного основания (7) приняло вид

$$\frac{\partial H}{\partial t} = \frac{(1 + e_0)(1 - 2\lambda \nu_2)}{\gamma_w C_{cz} B} \left(k_x \frac{\partial^2 H}{\partial x^2} + k_z \frac{\partial^2 H}{\partial z^2} \right) \tag{9}$$

и представляет собой основное дифференциальное уравнение, определяющее скорость объемного уплотнения,

 $\frac{\sigma_{X}}{\sigma_{Z}} = \sum_{\substack{C \in X, K_{X} \\ E_{X}, K_{X} \\ E_{Z}, K_{Z}}} e^{C_{X}}$

Puc. 1. Расчетная схема загрузки уплотняемого основания,

Если в (9) принять $\nu_1 = \nu_2 = \nu$, n = 1, то оно в точности совпадает с уравнением Флорина [2]. К (9) необходимо добавить условие, определяющее начальное состояние в момент приложения нагрузки. Оно нами найдено ранее [3]:

$$H_0 = \frac{1}{\gamma_w} \left[\sigma_x^* + A \left(\sigma_z^* - \sigma_x^* \right) \right], \tag{10}$$

где A =
$$\frac{1-\nu_2^2 n - \nu_2 - \nu_2 \nu_1}{\left((1-\nu_1^2)/n\right) - 2\nu_2 \left(1+\nu_1\right) - \nu_2^2 \ n + 1} \ .$$

Таким образом, (1)-(3), (9) и (10) определяют напряженное состояние в любой точке транстропного основания при их загружении,

На примере приложения к таким основаниям равномерно распределенной полосовой нагрузки (рис. 1) нами исследовано влияние и роль коэффициентов бокового расширения (ν_1 , ν_2) и модулей деформаций (E_χ , E_z) на распределение напряжений и избыточных напоров по глубине, Для этих целей использовали ранее полученные выражения [3]:

$$\sigma^* \frac{P_0}{\pi(m-1)} \left[m \left(\operatorname{arctg} \frac{x+b}{z} - \operatorname{arctg} \frac{x-b}{z} \right) - \operatorname{arctg} \frac{x+b}{zm} + \operatorname{arctg} \frac{x-b}{zm} \right];$$

$$\sigma_x^* = \frac{P_0 m}{\pi(m-1)} \left[m \left(\operatorname{arctg} \frac{x+b}{zm} - \operatorname{arctg} \frac{x-b}{zm} \right) - \operatorname{arctg} \frac{x+b}{z} + \operatorname{arctg} \frac{x-b}{z} \right],$$

$$(12)$$

где $m = \sqrt{\beta_{22}/\beta_{11}}$; P_0 — интенсивность равномерно распределенной полосовой нагрузки, мПа.

Таблица 1 Значения напряжений и порового давления под центром равномерно распределенной полосовой нагрузки (при $E_\chi/E_z=1...4$)

z!b	$v_1 = v_2 = 0$, 35 $E_x / E_z = 1$			$v_1 = v_2 = 0,35 \text{ E}_x/\text{E}_z = 2$				$v_1 = 0.35; v_2 = 0$ $E_x / E_z = 2$			$v_1 = 0.5; \ v_2 = 0.2$ $E_\chi / E_z = 2$			$\nu_1 = \nu_2 = 0.2$ $E_X/E_Z = 4$		
	$\overline{\sigma}_z^*$	$\overline{\sigma}_{\!x}^*$	P wo	$\overline{\sigma}_z^*$	$\overline{\sigma}_{x}^{*}$	\overline{P}_{wo}	$\overline{\sigma}_z^*$	$\overline{\sigma}_x^*$	\overline{P}_{wo}	$\overline{\sigma}_z^*$	\overline{o}_{χ}^*	P _{wo}	$\bar{\sigma}_z^*$	$\overline{\sigma}_{x}^{*}$	\overline{P}_{wo}	
0,5	960	450	705	943	514	1000	933	543	814	931	550	889	916	581	916	
1	820	180	500	774	185	€54	750	184	578	744	184	684	715	182	715	
1,5	668	80	374	615	77	688	589	75	432	583	74	528	554	72	554	
2	550	41	295	498	38	561	475	36	341	469	36	422	443	34	443	
2,5	462	23	- 242	415	21	468	394	20	280	389	20	349	366	19	360	
3	396	14	205	354	13	400	335	12	237	331	12	296	311	11	311	
3,5	345	9	177	308	8	348	291	8	205	287	8	257	270	7	270	
4	306	6	156	272	5,5	308	257	. 5	180	253	5	227	238	5	238	
4,5	274	4	139	243	4	276	230	4	161	227	4	203	213	3	213	
5	248	3	126	220	2,9	249	208	3	145	205	3	183	192	3	192	
5,5	226	2	114	201	2,2	227	189	2	132	187	2	167	175	2	175	
6	208	1,9	105	184	1,7	209	174	1,6	121	172	1,6	153	161	2	161	
6,5	193	1,5	97	170	1,3	193	161	1,3	112	159	1,2	2 142	149	1	149	
7	179	1,2	90	159	1,1	180	150	1	104	148	1	132	138	0,0	138	

Примечание. В таблице введены обозначения: $\overline{\sigma}_z^* = \sigma_z^* \cdot 10^3$; $\overline{\sigma}_x^* = \overline{\sigma}_x^* \cdot 10^3$; $P_{wo} = \gamma_{wo} \text{ H} \cdot 10^3$.

z /b	$v_1 = 0.5; \ v_2 = 0.1$ $E_X/E_z = 4$				$v_1 = v_2 = 0.35$ $E_X / E_z = 0.5$			$v_1 = 0; \ v_2 = 0.35$ $E_X/E_z = 0.5$			$v_1 = v_2 = 0.35$ $E_X/E_z = 0.25$			$ \nu_1 = 0; \nu_2 = 0.35 $ $ E_X/E_z = 0.25 $		
	$\overline{\sigma}_z^*$	$\bar{\sigma}_x^*$	P _{wo}	$\overline{\sigma}_z^*$	$\overline{\sigma}_{x}^{*}$	\overline{P}_{wo}	\ddot{o}_z^*	\overline{o}_x^*	\overline{P}_{wo}	$\overline{\sigma}_{\!z}^*$	$\overline{\sigma}_{x}^{*}$	\overline{P}_{wo}	$\overline{\sigma}_{\!\!z}^*$	$\vec{\sigma}_x^*$	\overline{P}_{wo}	
0,5	898	605	885	972	372	532	975	365	519	982	294	391	984	279	381	
1	686	178	664	865	171	356	874	167	353	904	151	257	911	146	257	
1,5	526	69	506	733	82	256	746	82	257	797	80	181	809	79	185	
2	419	32	402	618	43	197	632	44	199	693	45	137	708	45	141	
2,5	346	18	331	527	25	159	541	26	161	604	27	109	621	28	114	
3	293	10	281	456	16	133	470	16	135	531	17	90	548	18	95	
3,5	254	6,7	243	400	10	114	413	11	116	472	12	77	488	12	81	
4	224	4,6	214	356	7	100	368	7	102	423	8	67	438	8	71	
4,5	200	3,2	191	320	5	89	331	5	91	382	5,9	59	397	6,1	63	
5	181	2,4	173	291	3,8	80	300	3,9	82	349	4,4	53	362	4,6	56	
5,5	165	1,8	158	266	2,9	73	275	3	75	320	3,4	48	333	3,5	51	
6	151	1,4	145	245	2,2	67	254	2	68	295	2,6	44	307	2,7	47	
6,5	140	1	134	227	1,8	62	235	1,8	63	274	2,1	40	286	2,2	43	
7	130	0,0	124	211	1,4	57	219	1,5	59	256	1,7	38	267	1,8	40	

Примечание. В таблице введены обозначения: $\vec{\sigma}_z^* = \sigma_z^* \cdot 10^3$; $\vec{\sigma}_x^* = \vec{\sigma}_x^* \cdot 10^3$; $\vec{P}_{wo} = \gamma_w \text{ H·} 10^3$.

По полученным зависимостям составлены табл. 1 и 2 для различных соотношений коэффициентов бокового расширения и модулей деформаций. При их назначении исходили из условия положительности упругого потенциала для плоского деформированного состояния, т.е.

$$D = 1 - \nu_1 - 2n\nu_2^2 > 0, \tag{13}$$

где D — угловой минор системы уравнений (1), (2). Из таблиц видно, что конечные напряжения довольно чувствительны к отношению модулей и почти не чувствительны к коэффициентам бокового расширения.

Избыточное поровое давление, возникающее в основании при приложении нагрузки, принимает максимальное значение для коэффициентов бокового расширения, равных друг другу ($\nu_1 = \nu_2$). Таким образом, представляется возможным рекомендовать в расчетах принятие коэффициентов бокового расширения как для изотропного основания при соблюдении условия (13), что значительно упрощает вопросы прогнозирования поведения оснований.

Анализ таблиц позволил сделать вывод, что если искусственно создавать механическую анизотропию с преобладанием модуля общей деформации в вертикальном направлении, то можно до минимума свести влияние фактора порового давления на устойчивость основания и основную долю нагрузки передавать на скелет грунта. Это целесообразно делать при уплотнении слабых оснований (торфяных, илистых и т.д.). Например, при устройстве песчаных вертикальных дрен с последующим уплотнением трамбовками. Однако в этом случае возможна большая осадка по сравнению с изотропным основанием, так как вертикальные напряжения и активная зона сжатия значительно увеличиваются. И, наконец, если необходимо уменьшить активную зону сжатия, применяют горизонтальное армирование, т.е. устройство оснований с преобладающим модулем общей деформации в горизонтальном направлении. При этом избыточное поровое давление по сравнению с изотропным основанием возрастает, что важно учитывать при определении безопасной нагрузки.

ЛИТЕРАТУРА

1. Лехницкий С.Г. Теория упругости анизотропного тела. – М., 1977. – 415 с. 2. Флорин В.А. Основы механики грунтов. – М., 1961. – 543 с. 3. Банников Н.Д. Начальное поровое давление в трансверсально-изотропных основаниях // Прибалтийская геотехника VI. – Таллинн, 1986. – С. 145–148.

УДК 624.138

ГУЛЛА ЙОЗЕФ

ВОДООТЛИВ В КОТЛОВАНАХ ВНУТРИ ПРОТИВОФИЛЬТРАЦИОННЫХ ВАНН*

На реке Дунай у дер. Габчиково вблизи границы ЧССР и ВНР возводится гидроузел, в состав которого входят ГЭС проектной мощностью 720 МВ и судоходный шлюз. Особенностью инженерно-геологических условий площадки

Переводчики: Ю.А. Соболевский, М.И. Никитенко.