вии. Это показывает, что в необходимых случаях при соответствующем технико-экономическом обосновании рассмотренный метод защиты откосов и берегов от размыва может найти применение.

ЛИТЕРАТУРА

1. Шайтан В.С. Проектирование креплений земляных откосов на водохранилищах. АСиА СССР, ВОДГЕО. – М., 1962. – 213 с. 2. Пышкин Б.А. Динамика берегов водохранилищ. – Киев, 1973. – 413 с. 3. Гугняев Я.Э. Лабораторные исспедования волн фронтального направления с песчаными откосами. – Тр. ин-та Океанологии АН СССР. М., 1954, т. Х, с. 157–168. 4. Шайтан В.С., Гугняев Я.Э. Лабораторное исспедование крепления пологого откоса плотины Горьковского гидроузла. ВНИИ ВОДГЕО. – В сб.: Волновые исследования гидротехнических сооружений. М., 1961.

УДК 627.222

Е.С.ЛЕНАРТОВИЧ, канд. техн. наук, мл. науч.сотр. (БелНИИМиВХ)

СВЯЗЬ РАСХОДА НАНОСОВ СО СКОРОСТНЫМИ ХАРАКТЕРИСТИКАМИ ВОЛНОВОГО ПОТОКА ПРИ РАЗМЫВЕ ОТКОСА

Для определения вдольберегового расхода наносов существует много расчетных зависимостей. Как указывает В.Л.Максимчук [1], для решения уравнения деформации берега в поле волн и прибрежных течений необходимо изучение потока наносов поперек берега G, поскольку деформации берегов происходят наиболее интенсивно при фронтальном подходе волн.Однако пока зависимость для расчета расхода наносов при фронтальном подходе волн к берегу отсутствует. Чтобы ее установить, необходимо провести теоретические и экспериментальные исследования.

БелНИИМиВХ был проведен комплекс лабораторных и натурных исследований с целью изучения вопроса взаимодействия ветровых волн с земляными сооружениями. Изучались скоростная структура и мутность волнового потока на откосе. В результате было получено распределение скоростей по глубине потока и по откосу [2]. Установлено, что скорости и интенсивности турбулентности при скате волнового потока с откоса (U_c, K_c) и при накате (K_H, U_H) не равны между собой и зависят от параметров волны (h, λ), коэффициента заложения откоса m, крупности частиц грунта d, слагающего откос [3, 4].

Турбулентность руслового потока находится в зависимости также от содержания наносов в потоке [5, 6, 7 и др.]. Очевидно, такая связь будет иметь место и при взаимодействии волнового потока с откосом. Поэтому для получения расчетной зависимости расхода наносов при фронтальном подходе волны к откосу целесообразно идти по пути установления связи расхода наносов с интенсивностью турбулентности.

Экспериментальные исследования мутности волнового потока на откосе нами производились на естественных водоемах и в гидравлическом лотке

одновременно с изучением скоростной структуры. Были выбраны три опытных участка.

Первый участок расположен на пруде H-2 рыбхоза "Красная Слобода" со стороны верхового откоса дамбы КДН—2/H-10. Пляжный откос, образовавшийся в результате переформирования дамбы, сложен среднезернистыми песками со средневзвешенным диаметром d = 0,29 мм. Проектная величина заложения откоса дамбы m = 5, в период проведения исследований m = 11,0. На участок воздействуют C, 3, C3 ветры.

Второй участок находится на правом берегу водохранилища "Красная Слобода". Береговая отмель здесь выработана волнами в коренном берегу. Сверху она прикрыта песчаными наносами со средневзвешенным диаметром d =0,51 мм. На образовавшемся пляжном откосе m = 13,8. Участок подвергается воздействию C3, CB, C, 3 ветров.

Третий опытный участок расположен на левом берегу водохранилища. Береговая отмель также выработана в коренном берегу. Диаметр частиц песчаных наносов на пляжном откосе d = 0,39 мм. Коэффициент заложения откоса m = 37,0. На берег воздействуют ветры Ю, ЮВ, ЮЗ направлений.

Параметры волн на опытных участках были в следующих пределах: h = 0,05 \div 0,40 м, $\lambda_0 = \frac{\lambda}{h} = 10 \div 13$.

Лабораторные опыты проводились в гидравлическом лотке длиной 15 м, шириной 0,4 м, высотой 0,7 м. Откосы выполнялись из однородного промытого песчаного грунта со средневзвешенным диаметром частиц d = 0,2; 0,4 и 0,9 мм. Коэффициент заложения откоса для каждого вида грунта принимали: m = 3,0; 5,0 и 7,0. Волна в лотке создавалась волнопродуктором в виде плоского качающегося щита. Параметры волны изменялись в следующих пределах: высота волн 0,025 ÷ 0,15, длина 0,5 ÷ 1,6 м, период 0,5÷0,75 с. Глубина воды в лотке находилась в пределах H = 0,19 ÷ 0,38 м. На стеклянные стенки лотка были наклеены ленты из Миллиметровой бумаги, по которым фиксировали высоту и длину волны.

В начальный момент размыва откоса измерение скоростей проводилось в зоне разрушения волн в 5-6 точках по центральной вертикали, а на сформированном откосе — на 6-7 вертикалях по ширине откоса, расположенных в зоне от уреза воды до края отмели.

В лабораторных опытах отбор проб воды для определения мутности волнового потока производили следующим образом: вода с наносами поступала в стеклянный насадок 2 с боковыми отверстиями и отводилась наружу по резиновому шлангу 4, проходящему через отверстия 5 в стенке лотка к мерному цилиндру 9 (рис. 1). В натурных условиях пробы воды отбирались батометром и обычными мерными сосудами. Воду с наносами фильтровали на приборе Куприна. Фильтры с твердым остатком высушивали до постоянного веса и по объему воды и сухому остатку определяли мутность в каждой точке.

Всего было проведено 46 лабораторных опытов и 25 натурных измерений мутности.

Для учета полувзвешенных, взвешенных и влекомых наносов строили графики распределения мутности по глубине потока и определяли средние значения на вертикали, которые и использовались в дальнейших расчетах. По данным измерений высот волн, скоростей волнового потока и среднему значению мутности, по глубине потока были подсчитаны расходы наносов G в зоне разбивания волны при ее накате на откос (из расчета на 1 м):

$$G = U_{\perp} \rho h, \tag{1}$$

где U_н — средняя величина скорости; *р* — мутность потока (средняя по глубине потока); h — высота волны.

Рис. 1. Схема установки для отбора проб воды с наносами: 1 — подвижная игла шпиц-масштаба; 2 — заборная трубка; 3 — сливная трубка; 4 — резиновый шланг; 5 — отверстие в стенке лотка; 6 — стойка для крепления сливной трубки; 7 — сантиметровая шкала; 8 — график связи скоростного напора (△Н, мм) и высоты опускания (h, см) сливной трубки 3 по шкале 7 ниже уровня воды в лотке; 9 — мерный цилиндр.

Затем в логарифмических координатах были построены графики G = = f($\frac{\omega}{\sigma_{H}}$) (рис.2), где ω -гидравлическая крупность частиц грунта, слагающего откос; σ_{H} – среднее квадратическое отклонение пульсационной скорости в месте разбивания волны.

Графики представляли собой прямые линии

$$\lg G = b \lg \left(\frac{\omega}{\widetilde{G}_{H}}\right) + \lg a$$
(2)

или

$$G = \left(\frac{\omega}{\sigma_{H}}\right)^{b} a .$$
 (3)

Определяем значения а и b для каждого графика. Значения коэффициента b близки между собой. Принимаем среднее значение b = -2,33. Коэффициент а зависит от крупности частиц грунта, слагающего откос d, и величины коэффициента заложения откоса m. Строим в логарифмических координатах графики для определения a = f(sin a) (рис. 3), где sina выражен через заложение откоса m:

$$\sin a = \frac{1}{\sqrt{1 + m^2}}.$$

Графики представляют собой прямые линии типа:

Рис. 2. График связи расхода наносов и среднеквадратичного отклонения продольной составляющей пульсационной скорости волнового потока. При m = 3,0: \circ -d = 0,2 мм, x - 0,4, \Box - 0,9 мм; m = 5,0; \bullet -d = 0,2 мм, * - 0,4, \circ - 0,9 мм; m = 7,0: \circ -d = 0,2 мм, \circ - 0,4, \Box - 0,3 мм.

Рис. 3. Зависимость коэффициента а от d и m ; ∞ -d =0,2 мм, x - 0,4, \Box - 0,9 мм.

где z и а₀ — коэффициенты, зависящие от диаметра частиц грунта, слагающего откос.

Связь между z, a_o и d имеет вид:

$$z = \frac{8,33}{\sqrt[3]{d}}$$
; (5)

$$a_0 = 0,219d^{3,48}$$
. (6)

Подставив значения коэффициента а_о и z в (4), получим:

$$a = 0,219d^{3,48}e^{(\frac{8,33^{\circ}}{\sqrt{d\sqrt{1+m^2}}})}$$
 (7)

Применение зависимости (7) для расчета расхода наносов усложняется тем, что коэффициент откоса m входит в выражение показателя степени. С целью упрощения дальнейших расчетов построим графические зависимости а = f (sin a) в декартовых координатах. Графики аппроксимируются уравнением:

$$a = a_0 + M \sin^2 a.$$
 (8)

Здесь коэффициент М зависит от диаметра d. При d ≤0,4 мм.

$$a = 0,219d^{3,48} + 9,765d^2 \sin^2 a$$
, (9)

при d> 0,4 мм;

$$a = 0,219d^{3,48} + 25,445d^2sin^2a.$$
 (10)

Подставим полученные значения коэффициентов а и b в зависимость (3):

$$G = \left(\frac{\omega}{\sigma_{H}}\right)^{-2,33} \cdot 0,219d^{3,48} e^{\left(\frac{3}{\sqrt{d}}\sqrt{1+m^{2}}\right)^{2}}.$$
 (11)

Выразим $\mathbf{G}_{\mathbf{H}}$ через интенсивность турбулентности, т.е. $\mathbf{G}_{\mathbf{H}} = \mathbf{K}_{\mathbf{H}} \mathbf{U}_{\mathbf{H}}$:

$$G = \left(\frac{K_{\rm H}U_{\rm H}}{\omega}\right)^{2,33} 0.219 {\rm d}^{3,48} {\rm e}^{\left(\frac{-8,33}{3\sqrt{d}\sqrt{1+m^2}}\right)}, \qquad (12)$$

где G — расход наносов; K_H — интенсивность турбулентности; U_H — скорость наката волны на откос; ω — гидравлическая крупность наносов; d — средневзвешенный диаметр частиц грунта, слагающего откос; m — коэффициент заложения откоса; е — основание натуральных логарифмов.

Из зависимости (12) следует, что чем выше скорости потока и интенсивности турбулентности, тем больше расход наносов, а следовательно, и объемы размывов берегов водоемов, находящихся в стадии формирования.

ЛИТЕРАТУРА

1. Максимчук В.Л. Уравнение деформации морского берега в поле волн и прибрежных течений. — В сб.: Наука і техніка в міському господарстві. Киев, 1971. 2. Ленартович Е.С. Распределение скоростей в прибойной зоне малых водоемов. — Минск, 1977, № 12. З. Ленартович Е.С. Определение максимальных скоростей волн на откосе. — В сб.: Мелиорация торфяников и их сельскохозяйственное использование: Тр. БелНИИМиВХ. Минск, 1977, вып. З. 4. Ленартович Е.С. Саплюков и их сельскохозяйственное использование: Тр. БелНИИМиВХ. Минск, 1977, вып. З. 4. Ленартович Е.С., Саплюков в Ф.В. Интенсивность турбулентности волнового потока на откосе. — В сб.: Конструкции и расчеты осушительно-увлажнительных систем: Тр.БелНИИМиВХ. Минск, 1979, вып. 4. 5. Дмитрие в а Г.А. Влияние насыщения потока наносами на его кинематическую структуру: Автореф. ... дис. канд. техн.наук. — Новочеркасск, 1975. 6. Джбаршян Э.Т. Влияние твердых частиц на турбулентные характеристики жидкости и их транспорт потоком малой мутности: Автореф.дис... канд.техн. наук. — Киев, 1962. 7. Виноградова В.М. Экспериментальное исследование полей скоростей и концентрации равномерных взвесенесущих потоков: Автореф.дис... канд.техн.наук. — Л., 1968.

УДК 626.8:624.131.6

Г.А.ЩЕРБАКОВ, канд.техн.наук, и.о. доц.

ПРОГНОЗ ДИНАМИКИ УРОВНЕЙ ГРУНТОВЫХ ВОД С УЧЕТОМ ИЗМЕНЕНИЯ ЕМКОСТНЫХ И ФИЛЬТРАЦИОННЫХ ПАРАМЕТРОВ

Для прогнозов динамики уровней грунтовых вод (УГВ) в настоящее время широко используются аналитические методы, базирующиеся на решении одномерного уравнения Буссинеска, которое имеет в случае плоскопараллельного потока вид [1]:

$$\frac{\partial (\mu h)}{\partial t} = \frac{\partial}{\partial x} \left(K h \frac{\partial h}{\partial x} \right) \pm \omega , \qquad (1)$$

где μ -коэффициент водоотдачи; К — коэффициент фильтрации водоносной толщи, LT⁻¹; ω — интенсивность инфильтрационного питания, LT⁻¹; t — текущее время, T.