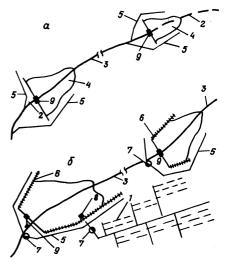
В.Ф. КАРЛОВСКИЙ, д-р техн. наук, директ., П.К. ЧЕРНИК, канд. техн. наук, зам. директ., И.В. МИНАЕВ, канд. техн. наук, зав. лаб., Ф.В. САПЛЮКОВ, канд. техн. наук, зав. лаб. (БелНИИМиВХ)


## РЕГУЛИРОВАНИЕ РЕЖИМА И КАЧЕСТВА СТОКА МАЛЫХ РЕК В СИСТЕМЕ ПРИРОДООХРАННЫХ МЕРОПРИЯТИЙ ПРИ МЕЛИОРАЦИИ ЗЕМЕЛЬ

Новое направление в проектировании мелиоративных систем связано с формированием экологически и технически совершенных систем. Особое значение приобретают вопросы сохранения режима и качества вод малых рек, служащих водоприемниками осушительно-увлажнительных систем. Инженерными мероприятиями можно возвратить чистоту воде, загрязненной вымытыми удобрениями и ядохимикатами, а также сохранить и улучшить режимы рек.

На рис. 1 приводится схема организации сброса воды из осушительноувлажнительной системы. Основные задачи природоохранного характера,

са воды из осушительно-увлажнительной системы:
а — водохранилища без обвалования;
б — с обвалованием; 1 — дренажная система; 2 — тальвег; 3 — нерегулируемая часть русла реки; 4 — водохранилища (пруды); 5 — фильтрационные каналы; 6 — дамбы обвалования; 7 — насосная станция; 8 — водовыпуск; 9 — паводковый водо-

Рис. 1. Схемы организации сбро-



решающиеся в этой схеме: сохранить русло реки в нижнем бьефе водохранилища в естественном состоянии и не допустить загрязнения воды. Для этого предусматриваются глубокие фильтрационные каналы по обе стороны (возможно с одной) водохранилища.

Профильтровавшаяся вода поступает в нижнее течение реки. Рассчитывается ее количество. Для регулирования фильтрационного стока канал разбивается на бьефы подпорными сооружениями. С осушаемых площадей осуществляется сброс воды в реку выше водохранилища или в водохранилище.

По исследованиям БелНИИМиВХ, в паводковых водах на подъеме и в первой половине периода спада половодья концентрация главных ионов, био-

сброс.

генных и органических веществ оказывается ниже предельно допустимых. Эти воды из магистральных каналов самотеком сбрасываются в реку по фильтрационному каналу. На спаде паводка сток с мелиоративной системы насосной установкой подается в водохранилище. Здесь следует устанавливать аэрационные установки для быстрейшего разложения органических примесей. В качестве аэраторов можно использовать конические вставки (насадки) в напорном трубопроводе. Вода из глубоких фильтрационных каналов сбрасывается в реку самотеком при положительном напоре или насосной станцией — при отрицательном (в вегетационный период).

В качестве примеров такой организации служат уже построенные водохранилища.

Прежде всего следует рассмотреть вопрос очистки воды, профильтровавшейся из водохранилища и поступившей затем в реку ниже плотины.

В табл. 1 приведен химический состав воды в верхнем и нижнем бьефах водохранилища "Красная Слобода", совмещенного с одноименным полносистемным рыбхозом. Все проточные воды рыбхоза поступают в р. Морочь на приплотинном участке протяжением 9,4 км, на котором происходит смещение фильтрационных вод и вод, сбрасываемых через водовыпуски. В связи с этим концентрация химических веществ в водах р. Морочь в нижнем бьефе водохранилища в 1.5-2.6 раза выше, чем в фильтрационных водах (см. табл. 1). И все-таки, несмотря на поступление проточных вод из рыбхоза, содержание химических элементов в самом водохранилище значительно выше (в 1,31-1,52 раза), чем в нижнем бьефе, когда отсутствуют попуски и происходит фильтрация только из водохранилища. В чисто дренажных водах, профильтровавшихся через тело и основание плотины, минерализация воды в 2,52 раза ниже, чем в водохранилище. Так же значительно снижается содержание большинства основных ионов (см. табл. 1). По своему качеству дренажные воды не уступают грунтовым. Последние, например в зоне водохранилища "Красная Слобода", имеют общую минерализацию 150-190 мг/л. Биологическое поглощение кислорода (БПК<sub>Б</sub>) как для грунтовых, так и для поверхностных вод колеблется в пределах 2.2-

Химический состав воды

| Даты взятия | Место отбора | рН   |       | Содержание       |       |  |  |  |  |
|-------------|--------------|------|-------|------------------|-------|--|--|--|--|
| проб воды   | проб воды    | pri  | Ca"   | Mg <sup>II</sup> | нсо3  |  |  |  |  |
| 26.06.1974  | Верхний бьеф | 8,0  | 42,69 | 17,2             | 201,3 |  |  |  |  |
| 26.06.1974  | Нижний бьеф  |      |       |                  |       |  |  |  |  |
|             | р. Морочь    | 7,32 | 32,67 | 11,41            | 164,7 |  |  |  |  |
| 10,04.1975  | Верхний бьеф | 8,11 | 51,42 | 16,22            | 256,0 |  |  |  |  |
| 10.04.1975  | Нижний бьеф  |      |       |                  |       |  |  |  |  |
|             | р. Морочь    | 8,5  | 44,65 | 14,85            | 238,0 |  |  |  |  |
| 12.05.1975  | Верхний бьеф | _    | 50,0  | 20,74            | 220,0 |  |  |  |  |
| 12.05.1975  | Нижний бьеф  |      | •     | •                | •     |  |  |  |  |
|             | дренаж       |      | 30.0  | 2,44             | 36.6  |  |  |  |  |
| 09.09,1977  | Верхний бьеф | 8,52 | 83.9  | 17,9             | 331.8 |  |  |  |  |
| 09.09.1977  | Нижний бьеф  |      | **    | •                | •     |  |  |  |  |
|             | р. Морочь    | 7,73 | 42.4  | 10.5             | 231,8 |  |  |  |  |

2,6 мг/л и  ${\rm O}_2$ . Нефтепродукты, СПАВ и другие загрязняющие вещества в водах не обнаружены.

Аналогичный процесс самоочищения воды наблюдается в нижнем бьефе Солигорского водохранилища на р. Случь. Фильтрационные расходы (0,4—0,75  $\,\mathrm{m}^3/\mathrm{c}$ ) через плотину и дамбы Д-1 и Д-1 поступают в р. Случь на приплотинном участке протяжением около 2 км и учитываются измерениями на водпосту "Старобин".

Анализ данных УГМС БССР по химическому составу проб воды, отобранных в самом водохранилище и на водпосту "Старобин", показал, что минерализация воды (сумма ионов) в нижнем бьефе при расходах Q> 5,5 ÷ 6,0 м<sup>3</sup>/с практически не отличается от минерализации в водохранилище. При уменьшении расхода Q отношение минерализации воды в водохранилище

минерализации в нижнем бьефе  $\frac{\Sigma N_{66}}{\Sigma N_{H6}}$ возрастает. Минимальные значения

расходов в нижнем бъефе Q, при которых определялся химический состав воды, находятся в пределах  $0.7-0.83 \text{ м}^3/\text{c}$ , т.е. близки к величине фильтрационного расхода через плотину и дамбы Д-1 и Д-1 при НПУ в верхнем бъефе.

Этим расходам соответствует отношение  $\frac{\Sigma N_{B6}}{\Sigma N_{H6}}$  = 1,53. Следовательно, мож-

но утверждать, что в условиях Солигорского водохранилища в фильтрационных водах содержится химических веществ в 1,53 раза меньше, чем в водохранилище. При сбросах воды из водохранилища происходит разбавление более минерализованных сбросных вод менее минерализованными фильт-

рационными водами: отношение  $\frac{\Sigma N_{B6}}{\Sigma N_{H6}}$  уменьшается с увеличением расхода

Q и при  $Q > 5,5 \div 6 \text{ м}^3/\text{с}$  значение его равно единице.

Количество воды, профильтровавшейся из водохранилища в канал, зависит от параметров последнего, напора и гидрогеологических условий. Не-

Таблица 1

водохранилища "Красная Слобода"

| ов, мг/л        |       | Сумма ионов | ΣΝ <sub>Β</sub> δ |          |                  |  |
|-----------------|-------|-------------|-------------------|----------|------------------|--|
| so <sub>4</sub> | Ce'   | Na3         | Na+K              | ΣИ, мг/л | ΣΝ <sub>Ηδ</sub> |  |
| 18,50           | 12,48 | 0,35        | 9,0               | 301,52   | 1,31             |  |
| 6,16            | 8,64  | 0,30        | 6,8               | 230,68   |                  |  |
| 44,1            | 14,7  | 1,55        | 48,1              | 432,09   |                  |  |
| , .             |       | •           |                   |          | 1,15             |  |
| 29,5            | 10,5  | 0,82        | 38,7              | 377,02   |                  |  |
| 37,5            | 14,0  | 0,07        | 36,8              | 379,04   |                  |  |
| /-              | ,-    | ••          |                   |          | 2,52             |  |
| 37.5            | 5,25  | _           | 38,9              | 150,69   |                  |  |
| 11,1            | 16,8  |             | ·                 | 461,5    |                  |  |
|                 | -7-   |             |                   |          | 1,52             |  |
| 5,6             | 12,4  | _           | -                 | 302,7    |                  |  |

обходимо учитывать и поступление в канал грунтовых вод со стороны водосбора в нижнем бьефе. В ряде случаев оно невелико. Например, в условиях водохранилищ "Красная Слобода", "Солигорское" и "Любанское" при глубине дренажных каналов 2,5—3,0 м уклоны кривых депрессии со стороны нижнего бьефа колеблются в пределах 0,001—0,003, что в 30—50 раз меньше, чем на участках между водохранилищем и каналами.

Параметры фильтрационного канала определяются типом землеройных машин, инженерно-геологическими условиями, экономическими показателями и водохозяйственным использованием водоема. Поэтому весьма важно оценить долю фильтрационных вод в расходной части водохозяйственного баланса водохранилища с целью использования их в качестве попусков в реку ниже плотины.

Рассмотрим, как складывается фактическая структура расходной части водохозяйственного баланса некоторых водохранилищ в зоне Полесья, установим технические возможности изменения ее с целью улучшения качества воды предлагаемым способом.

В табл. 2 и 3 для водохранилищ "Солигорское" и "Красная Слобода" приведены месячные значения основных элементов расходной части баланса (кроме испарения): суммарной фильтрации через плотины и дамбы  $(W_{\mathfrak{p}})$ , водопотребления рыбхоза  $(W_{\mathfrak{p}x})$  и попусков в реку ниже водохранилища  $(W_{\mathfrak{p}})$ .

"По правилам эксплуатации Солигорского водохранилища попуски из него производятся круглый год. Наибольшие сбросы наблюдались в апреле 1976 и 1979 гг. (соответственно 75,0 и 78,0 млн.м $^3$ ). В летний период, осенью и зимой объемы попусков  $W_{\Pi}$  составляли от 2,3 до 26,3 млн.м $^3$  в месяц.

Наименьшие величины фильтрации и попусков имели место обычно в июле. В этот период соотношение между ними оказывалось наименьшим  $(\frac{W_n}{W_n} < 3,1)$  .

В условиях Солигорского водохранилища месячная величина фильтрации при НПУ 3,5—4,0 млн.м<sup>3</sup>. Путем устройства фильтрационных каналов по схеме рис. 1, б ее можно увеличить до 20—25 млн. м<sup>3</sup>. Следовательно, практически все попуски через водосброс в летний, осенний и зимний периоды были бы прекращены, и в р. Случь ниже водохранилища поступали только фильтрационные воды, выполняющие роль попусков. Оперативно управлять ими можно было бы с помощью шлюзов-регуляторов на фильтрационных каналах.

Для водохранилища "Красная Слобода" характерными являются незначительные попуски редкой повторяемости (табл. 3). Повышенный сброс воды осуществлялся только в апреле 1979 г., что было вызвано прорывом правобережной дамбы обвалования Семежевского перепуска р. Морочь. Месячные объемы попусков колебались в пределах 1,0—6,8 млн.м<sup>3</sup>, общий объем их за 1974—1980 гг. составил 32,4 млн.м<sup>3</sup>.

Расходы фильтрации и сбросов воды из прудов, а также местный сток с незарегулированной водосбросной площади частично возвращаются в водохранилище насосной станцией и повторно используются для водоснабжения

 Таблица 2

 Расходная часть водохозяйственного баланса

 Солигорского водохранилища, млн. м

| Элементы<br>расхода              | 1    | li ii | 111   | IV    | V     | VI           | VII  | VIII | ıx   | ×    | ΧI    | XII  |
|----------------------------------|------|-------|-------|-------|-------|--------------|------|------|------|------|-------|------|
|                                  |      |       |       |       |       | 1972         |      |      |      |      |       |      |
| ٧m                               | 3,1  | 2,7   | 3,1   | 3,0   | 2,7   | 2,3          | 2,6  | 2,5  | 2,2  | 2,3  | 2,6   | 3,0  |
| ~ф<br>~п                         | 4, 4 | 2,0   | 15, 6 | 23, 5 | 16, 3 | 4, 0<br>1974 | 5, 1 | 4, 2 | 6, 8 | 9, 9 | 14,4  | 15,4 |
| Ψφ                               | 2,7  | 2,6   | 2,9   | 2,3   | 2,4   | 2,3          | 2,5  | 3,0  | 3,0  | 3,5  | 3,6   | 3,7  |
| wπ                               | 10,1 | 15,2  | 24,2  | 12,2  | 7,9   | 10,6<br>1976 | 5,2  | 4,4  | 6,4  | 18,9 | 38,1  | 31,2 |
| W <sub>+</sub>                   | 2,0  | 1,7   | 2,3   | 2,5   | 2,5   | 2,2          | 2,2  | 2,5  | 2,4  | 2,4  | 2,0   | 2,1  |
| м <sub>ф</sub><br>м <sub>п</sub> | 10,3 | 5,6   | 21,7  | 75,0  | 16,8  | 14,5         | 2,3  | 2,6  | 8,2  | 9,8  | 10,2  | 7,7  |
| п                                |      |       |       |       |       | 1978         |      |      |      |      |       |      |
| w.                               | 2,9  | 2,2   | 2,4   | 2,4   | 2,5   | 3,1          | 3,1  | 2,9  | 3,0  | 2,9  | 2,4   | 2,6  |
| √ф<br>~п                         | 16,4 | 10,1  | 53,7  | 32,7  | 26,3  | 10,3         | 9,8  | 15,8 | 10,9 | 25,6 | 17,3  | 10,7 |
| П                                |      |       |       |       |       | 1980         |      |      |      |      |       |      |
| Ψ <sub>Φ</sub>                   | 2,4  | 2,2   | 1,9   | 2,6   | 2,4   | 2,5          | 2,8  | 2,8  | 2,6  | 2,8  | 2,3   | 2,7  |
| wη                               | 7,8  | 14,6  | 7,9   | 58,2  | 12,7  | 7,1          | 5,7  | 20,6 | 15,5 | 22,1 | 23,72 | 2,7  |

Расходная часть водохозяйственного баланса

Таблица З

| расходная часть водохозяиственного овланса<br>водохранилища "Красная Слобода", млн.м <sup>3</sup> |     |     |      |      |      |      |     |      |     |     |     |      |
|---------------------------------------------------------------------------------------------------|-----|-----|------|------|------|------|-----|------|-----|-----|-----|------|
| Элементы<br>расхода                                                                               | ı   | 11  | 111  | IV   | v    | VI   | VII | VIII | ix  | ×   | ΧI  | XII  |
|                                                                                                   |     |     |      |      |      | 1974 |     |      |     |     |     |      |
| w <sub>φ</sub>                                                                                    | 1,8 | 1,8 | 2,2  | 1,1  | 1,0  | 0,9  | 8,0 | 0,7  | 0,6 | 8,0 | 2,0 | 2,5  |
| w <sub>bx</sub>                                                                                   | 1,0 | 0,9 | 6,6  | 8,3  | 8,7  | 9,4  | 7,6 | 6,5  | 2,5 | 0,1 | 0,1 | 0,1  |
|                                                                                                   |     |     |      |      | •    | 1976 |     |      |     |     |     |      |
| w <sub>Φ</sub>                                                                                    | 2,0 | 1,6 | 2,2  | 2,0  | 2,2  | 1,8  | 1,7 | 1,6  | 1,4 | 1,4 | 2,1 | 2,1  |
| w px                                                                                              | 6,7 | 7,5 | 9,4  | 11,7 | 10,5 | 7,4  | 3,8 | 3,7  | 3,6 | 4,7 | 4,5 | 4,7  |
| P^                                                                                                | -   | _   | -    | 4,0  | -    | _    | _   | _    | -   | _   | _   | -    |
|                                                                                                   |     |     |      |      |      | 1978 |     |      |     |     |     |      |
| <b>м</b> ф                                                                                        | 3,1 | 2,7 | 3,2  | 2,6  | 2,7  | 2,4  | 2,1 | 1,8  | 1,7 | 2,0 | 2,0 | 1,9  |
| w <sub>px</sub>                                                                                   | 6,7 | 7,1 | 12,6 | 12,2 | 3,0  | 11,6 | 8,3 | 5,7  | 3,7 | 5,0 | 4,0 | ·6,7 |
|                                                                                                   |     |     |      |      |      | 1980 |     |      |     |     |     |      |
| <b>~</b> ф                                                                                        | 0,6 | 0,6 | 0,7  | 1,3  | 2,0  | 1,6  | 1,5 | 1,5  | 1,4 | 1,7 | 1,7 | 1,8  |
| N <sub>DX</sub>                                                                                   | 7,3 | 6,9 | 6,1  | 5,9  | 7,0  | 6,8  | 7,0 | 6,2  | 7,8 | 6,7 | 6,5 | 8,9  |

N

рыбхоза. Остальные объемы воды (в межень около 3—4 млн.м<sup>3</sup> в месяц) создают проточность на ниже расположенном участке р. Морочь. Эти проточные воды являются более минерализованными, чем дренажные (см. табл. 1). Поэтому в результате разбавления их фильтрационными водами, поступающими из водохранилища, улучшается качество проточной воды, а также увеличивается степень проточности в р. Морочь. Для этого расходы фильтрации из водохранилища необходимо направить по фильтрационным каналам в нижний бьеф.

При обычных условиях эксплуатации водохранилища "Красная Слобода" минимальный месячный объем фильтрации составляет 1,1 млн. м<sup>3</sup>, максимальный — 3,8 млн. м<sup>3</sup> (см. табл. 3). Следовательно, коэффициент водообмена в р. Морочь можно увеличить на 30—90%.

Из анализа приведенных выше материалов следует, что очищающая способность грунта при фильтрации воды из водохранилища в каналы достаточно высока и стабильна, но зависит от гидрогеологических условий района и требует дальнейшего изучения. При этом необходимо, чтобы расстояние между урезами воды в водохранилище и каналах было не менее 60 м. Сохранение паводковых в водохранилищах и постепенное их расходование через фильтрационные каналы позволит существенно улучшить качество воды малых и средних рек. Водохранилища могут служить накопителями дренажных вод, а насосно-силовое оборудование для перекачки дренажных вод — для их аэрации. Инженерные методы позволяют не только сохранить, но и улучшить природную среду.

УДК 556.18

В.В. ДРОЗД, канд.геогр.наук, зав. лаб. (ЦНИИКИВР)

## ОЦЕНКА ГИДРОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК МЕЖЕНИ ПО КАРТОГРАФИЧЕСКОЙ ИНФОРМАЦИИ

Гидрологическое обоснование водохозяйственных проектов при отсутствии данных наблюдений часто встречает затруднения. В особенности это относится к небольшим рекам, которые слабо изучены. Гидрологические расчеты в этих условиях ведутся обычно на основе кратковременных изысканий или метода аналогии.

Однако для многих гидрологических расчетов целесообразно использование картографической информации, получаемой с топографических карт крупного масштаба. Эта информация находит широкое применение при определении гидрографических характеристик речных водосборов. Опыт показывает, что положительные результаты дает также использование гопографических карт для оценки гидравлико-морфометрических характеристик и стока в период межени.

Известны предложения и попытки оценки гидравлико-морфометрических характеристик и расходов воды по теоретическим зависимостям пара-