организации и технологических возможностей, но и по непрерывному повышению эффективности производства.

Современное высокопроизводительное оборудование, постоянная модернизация производства, эффективная организация труда и внедрение новых технологий оказались необходимыми для обеспечения конкурентоспособности продукции. В условиях рыночной экономики с постоянно меняющимися ценами на продукцию и ресурсы рекомендуется рассмотреть возможность использования энергетических показателей для оценки организационного и технологического уровня производства.

Организационно-технический уровень производства — это оценка состояния и степени совершенствования его организационных методов, влияющих на эффективность использования ресурсов и качества готовой продукции и технологической базы, методов и приемов. Иными словами этот уровень определяется организационными и техническими компетенциями производства.

Повышение организационно-технического уровня - сложный и непрерывный процесс, включающий в себя научно-технический прогресс, уровень производственных технологий и процессов, организационную структуру предприятия, уровень управления производством и трудом, а также уровень экономических механизмов и управления, иными словами — это формирование совокупности smart- компетенций [3, 4] организационно-технического уровня промышленного производства.

В таких условиях очень действенным драйвером конкурентного развития промышленного производства становится такая компетенция как «технологическая безопасность», которую можно определить состоянием, обеспечивающим наилучшее использованием техники и технологии и создающее условия стабильного, эффективного функционирования и ожидаемого получения прибыли. Результатом такого состояния выступает технико-технологическая и экономическая безопасности. По мере ускорения технического прогресса предприятиям приходится быстрее обновлять свои основные фонды в условиях новых технологий. Поэтому оценка технологической безопасности производства является одной из ключевых задач экономического анализа предприятия [5].

Заключение. Организационно-технический уровень промышленного производства в условиях нестабильной и непрозрачной экосреды в значительной степени предполагает учет неординарных когнитивно-технологических и структурно-динамических технических изменений во всех его сферах. Анализ и оценка данных процессов помогает менеджерам промышленных компаний обеспечить высший уровень технического прогресса, что позволяет быть конкурентноспособным на мировом рынке. Перенятие лучшего зарубежного опыта способствует усовершенствованию собственного технологического процесса и его организации.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Маркс, К., Энгельс, Ф. Капитал // Соч. 2-е изд. Т.23. 515с.
- 2. Демидов, В.И. Экономический механизм технического перевооружения производства: Автореф. дис.на соискание ученой степени доктора экон. наук: 08.00.05. / Бел. гос. институт народного хозяйства В.В. Куйбышева. Минск, 1991. 46с.
- 3. Жудро М.К. SMART-маркетинг инактиватор парадигмы «продвижение» в развитии профессиональных компетенций маркетологов / М.К. Жудро, Н.В. Жудро // Проблемы прогнозирования и государственного регулирования социально—экономического развития: материалы XXII Междунар. науч. конф. (Минск, 21–22 окт. 2021 г.). В 3 т. Т. 1 / Редкол.: Н.Г. Берченко [и др.]. Минск: НИЭИ Министерства экономики Респ. Беларусь, 2021. С. 30 31.
- 4. Жудро, М.М. Методический инструментарий идентификации и количественного измерения высокотехнологичного бизнеса / М.М. Жудро // Научные труды Белорусского государственного экономического университета. Минск: БГЭУ, 2019. Вып.12. С.181 187.
- 5. Яшин, С.Н., Кузнецов, В.П., Охезина Г.М. Оценка перспективности и реализуемости процессных инноваций на примышленном предприятии: монография. Нижний Новгород: НГПУ, 2016. 152с.

УДК 656.02

ВНЕДРЕНИЕ ИННОВАЦИЙ В ТРАНСПОРТ КАК ФАКТОР ПОВЫШЕНИЯ ЕГО КОНКУРЕНТОСПОСОБНОСТИ

докт. филос. наук, Юницкий А.Э., Власовец Е.Н., Шанчук А.С., , ЗАО «Струнные технологии», г. Минск

Резюме. Транспорт и логистика играют важнейшую роль в жизни общества, обеспечивая доступ населения к любым объектам социальной инфраструктуры. Неоспоримая социальная значимость общественного и транспорта личного пользования, а также необходимость формирования рынка транспортных услуг, отвечающего требованиям динамично развивающегося общества, обуславливает необходимость внедрения инноваций в транспортную систему, как фактора повышения её конкурентоспособности. Белорусская разработка — транспортно-инфраструктурные комплексы ЮСТ — может успешно внедриться в рынок транспортных услуг, в полной мере соответствуя современным тенденциям развития транспортных технологий.

Ключевые слова: инновации, транспортная система, конкурентоспособность, пассажирские перевозки, эффективность.

Введение. Рост национальной конкурентоспособности транспортной отрасли напрямую зависит от инновационных процессов, направленных на сбережение ресурсов, обеспечение безопасности и сохранение экологии страны. В последние десятилетия транспортный сектор претерпевает существенные технологические, правовые, социальные, качественные и количественные преобразования, радикально меняющие облик всей мировой транспортной системы. Любые значительные изменения на рынке создают дополнительные возможности для внедрения новых продуктов [1].

Мировой рынок ждёт появления принципиально новых инновационных транспортных технологий, которые соответствовали бы современным мировым тенденциям и требованиям, предъявляемым к транспортным технологиям: автоматизация, электрификация, безопасность во всех её аспектах, в том числе экологическая, а также экономическая, ресурсная эффективность и т. д.

Основная часть. Несмотря на хорошо развитую транспортную систему Республики Беларусь, представленную различными видами транспорта (автомобильным, городским электрическим транспортом, метрополитеном, воздушным, железнодорожным, внутренним водным), в течение 2015—2022 гг. наблюдается сокращение объёма перевозок пассажиров (таблица 1).

Таблица 1 – Динамика перевозки в Республике Беларусь пассажиров всеми видами транспорта, млн человек [2]

Год	2015	2016	2017	2018	2019	2020	2021	2022
Перевозки пассажиров	2094,1	1971 4	1967,4	1979 2	1995.0	1639,2	1591.6	1568,3
транспортом, млн человек	2074,1	17/1,4	1707,4	1777,2	1773,0	1037,2	1371,0	1300,3

Спрос на пассажирские перевозки общественным транспортом напрямую зависит от многочисленных факторов – общей численности населения, уровня занятости, числа проживающих в сельской местности, количества учащихся и студентов, а также повышения требований к качеству оказания транспортных услуг (время в пути, комфорт, удобство).

В структуре пассажирских перевозок по видам транспорта наблюдается устойчивый рост спроса на пользование таксомоторным транспортом — легковые автомобили-такси, что свидетельствует о перераспределении спроса в сторону более мобильных и комфортных видов транспорта (рисунок 1) [2].

Рисунок 1 – Индекс объёма пассажирских перевозок таксомоторным транспортом

Согласно официальной статистике по-прежнему остаётся высоким показатель использования населением средств индивидуальной мобильности для осуществления поездок в трудовых и культурно-бытовых целях, в частности, легковых автомобилей (таблица 2).

Таблица 2 — Динамика количества легковых автомобилей и обеспеченности населения Республики Беларусь легковыми автомобилями на 1000 человек населения за период 2015—2022 гг. [2].

Показатель	2015	2016	2017	2018	2019	2020	2021	2022
Обеспеченность населения легковыми автомобилями на 1000 человек населения	307	311	315	321	329	325	324	323

Индекс обеспеченности легковыми автомобилями населения Республики Беларусь выше аналогичного показателя в Российской Федерации (315 штук на 1000 человек населения) [3].

Повышение спроса на более комфортное и быстрое перемещение и рост зависимости от личного транспорта приводит к увеличению числа автомобилей на дорогах общего пользования, что обуславливает формирование множества современных транспортных проблем: перегруженность улично-дорожных сетей; пробки и заторы; увеличение дорожно-транспортной аварийности; транспортные задержки.

Одним из способов решения вышеупомянутых проблем может стать внедрение инноваций в систему общественного транспорта страны за счёт реализации транспортно-инфраструктурных комплексов ЮСТ – это комплексное инфраструктурное решение на основе инженерных разработок и ноу-хау белорусского учёного, инженера-изобретателя А.Э. Юницкого, базирующегося на использовании запатентованных технологий струнного рельса и предварительно напряжённой рельсо-струнной транспортной эстакады, по которой в автоматизированном режиме управления перемещаются рельсовые электромобили-беспилотники (юнимобили). В общем виде состав комплекса представлен на рисунке 2.

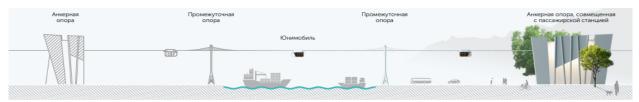


Рисунок 2 – Схематическое представление состава комплекса ЮСТ

Благодаря тому, что юнимобили перемещаются над землёй по эстакаде, увеличивается скорость, обеспечиваются транспортная безопасность и рациональное использование земли и ресурсов, сводится до минимума наносимый наземным транспортом вред окружающей среде (рисунок 3). Наличие противосходной системы, эстакадное исполнение и отсутствие человеческого фактора в управлении позволяют обеспечить высокий уровень безопасности и исключить ДТП с другими участниками дорожного движения [4, 5].

Инновационные транспортно-инфраструктурные комплексы ЮСТ обладают и другими конкурентными преимуществами: низкое энергопотребление (в 2–3 раза ниже по сравнению с традиционными видами транспорта, использующими стальные колёса или магнитную подушку, и в 5–7 раз ниже по сравнению с автомобильным транспортом); сниженная себестоимость перевозок (экономия фонда оплаты труда за счёт отсутствия водителей для подвижного состава, низкие расходы на техническое обслуживание); минимальный землеотвод под строительство (0,05–0,1 га/1км трассы, что требует в 30–50 раз меньше земли, чем для строительства железнодорожных или автомобильных магистралей аналогичной производительности); длительный гарантийный срок эксплуатации до капитального ремонта (эстакады – от 50 лет, подвижного состава – от 25); оперативность и низкие затраты ресурсов для интеграции в действующую городскую и информационно-коммуникационную инфраструктуру [4, 5, 6].

Рисунок 3 – Демонстрационно-испытательный центр «ЭкоТехноПарк» (Марьина Горка, Беларусь), 2020 г.

Заключение. Инновационные транспортные комплексы ЮСТ — принципиально новый подход к организации пассажирских перевозок, отвечающий текущим тенденциям рынка транспортных услуг и способный стать новым вектором развития транспортной системы Республики Беларусь.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Берман Н. Д., Белов А. М. Общественный транспорт и инновации //International Journal of Advanced Studies. 2019. Т. 9. № 2. С. 7-13.
- 2. Официальный сайт Национальный статистический комитет Республики Беларусь [Электронный ресурс]. Режим доступа: https://www.belstat.gov.by/ofitsialnaya-statistika/realny-sector-ekonomiki/transport/. Дата доступа: 19.02.2024.
- 3. Федеральная служба государственной статистики Беларусь [Электронный ресурс]. Режим доступа: https://rosstat.gov.ru/statistics/transport. Дата доступа: 19.02.2024.
- 4. Юницкий, А.Э. Струнные транспортные системы: на Земле и в Космосе / А.Э. Юницкий. Силакрогс: «ПНБ принт», 2019. 576 с.
- 5. Транспортно-инфраструктурные решения Unitsky String Technologies Inc. [Электронный ресурс]. Режим доступа: https://ust.inc. Дата доступа: 16.02.2024.
- 6. Юницкий А.Э. Транспортный комплекс SkyWay в вопросах и ответах. 100 вопросов 100 ответов [Электронный ресурс]. Режим доступа: https://unitsky.engineer/assets/files/shares/2016/2016_67.pdf. Мн: SkyWay Technologies Co., 2016. 84 с.