Исследования показали, что в натурных условиях зависимости (1—2) и (6—17) могут использоваться при $h_{1\%}=0.2-1.0$ м; $\lambda_0=10h_{1\%}$; $d_{\text{CB3B}}=0.25-1.0$ мм; $D_{\text{CB3B}}=35.0-200$ мм; $\eta=3.5-12.0$.

ЛИТЕРАТУРА

1. П ы ш к и н Б.А. Динамика берегов водохранилищ. — Киев, 1973. - 414 с. 2. С о к о л ь н и к о в Ю.Н. Инженерная морфодинамика берегов и ее приложения. — Киев, 1976. - 227 с. 3. Максимчук В.Л., Левкевич В.Е. Экспериментальное исследование образования отмостки в береговой зоне малых водохранилищ. // Гидравлика открытых русел. — М., 1985. - C. 45-50. 4. Левкевич В.Е. Учет фактора неоднородности грунта при защите размываемых берегов водохранилищ. 1983. — Вып. 11. - C. 20-23. 5. Левкевич В.Е. Лабораторное исследование деформаций берегов, сложенных грунтами с повышенной степенью неоднородности // Водное хоз-во и гидротехн. стр-во. — 1985. - Bып. 15. - C. 57-61. 6. Хомицкий В.В. Исследование банкетов из горной массы для защиты берега от размыва волнами: Автореф, дис. ... канд, техн, наук, — Киев, 1973. - 18 с.

УДК 624.131.52

С.В.СОБОЛЕВСКИЙ (БПИ)

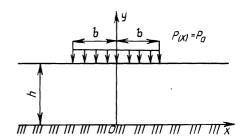
РАСЧЕТ НАЧАЛЬНЫХ НАПРЯЖЕНИЙ И НАПОРНОЙ ФИЛЬТРАЦИОННОЙ ФУНКЦИИ В АНИЗОТРОПНОМ ВОДОНАСЫЩЕННОМ СЛОЕ КОНЕЧНОЙ ТОЛЩИНЫ

Определение распределения напряжений в основаниях конечной толщины— весьма актуальная задача. В [1] исследовано распределение напряжений и перемещений в изотропном основании конечной толщины.

В настоящей работе рассмотрено напряженное состояние водонасыщенного ортотропного основания конечной толщины при воздействии нормальной нагрузки.

Пусть на ортотропный водонасыщенный слой толщиной y=h с главными направлениями, параллельными и перпендикулярными плоскости y=h, лежащий на жестком водоупоре y<0, в начальный период действует нормальная нагрузка P(x) (рис. 1).

Определение начальных напряжений и напорной фильтрационной функции возможно при решении:



Рис, 1, Схема загружения основания конечной толщины

уравнений равновесия скелета водонасыщенного грунта:

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial g_{y}} + \gamma \frac{\partial H}{\partial x} = 0,$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial v} + \gamma \frac{\partial H}{\partial v} = 0,$$

где γ — объемная масса воды, H — напорная фильтрационная функция; уравнения напорной фильтрационной функции [2]

$$K_x \frac{\partial^2 H}{\partial x^2} + K_y \frac{\partial^2 H}{\partial y^2} = 0$$
 или $n^2 \frac{\partial^2 H}{\partial x^2} + \frac{\partial^2 H}{\partial y^2} = 0$,

 $\Gamma_{AB} = \frac{K_{x}}{K_{y}}$, K_{x} , K_{y} — коэффициенты фильтрации соответственно в горизонтальном и вертикальном направлениях;

уравнения неразрывности скелета в начальный период загружения [5] при $\sigma_{\rm x}$ + $\nu^2\sigma_{\rm v}$ = 0:

$$\frac{\partial^2 \sigma_{\nu}}{\partial v^2} + m^2 \frac{\partial^2 \sigma_{\nu}}{\partial x^2} = v\gamma \frac{\partial^2 H}{\partial x^2} \,, \tag{1}$$

где

$$m^{2} = \frac{\frac{1 - \mu_{yz}^{2} + (\mu_{yx}^{2} + \mu_{zx} \mu_{yz}) \nu^{2}}{E_{y}} \frac{\nu^{2}}{2G}}{\frac{1}{2G}}$$

$$\frac{1}{2G} - \frac{(1 - \mu_{xz}^{2}) \nu^{2} + \mu_{xy} + \mu_{xz} \mu_{zy}}{E_{x}}$$

$$v = \frac{n^{2} - 1}{2G \left[\frac{1}{2G} - \frac{(1 - \mu_{xz}^{2}) \nu^{2} + \mu_{xy} + \mu_{xz} \mu_{zy}}{E_{x}}\right]}{\frac{1}{2G}}$$

$$v^{2} = \frac{E_{x} (1 - \mu_{yz}^{2}) - E_{y} (\mu_{xy} + \mu_{xz} \mu_{zy})}{\frac{1}{2G}}$$

$$v^{2} = \frac{E_{y} (1 - \mu_{xz}^{2}) - E_{y} (\mu_{yx} + \mu_{zx} \mu_{yz})}{\frac{1}{2G}}$$

где E_x , E_y — модули деформации по главным направлениям x,y; $G = \frac{E_y}{2\left(1 + \mu_{xy}\right)}$ модуль сдвига, μ_{ii} — коэффициенты Пуассона.

Вывод уравнения (1) для случая плоской деформации ортотропного водонасыщенного основания, подчиняющегося обобщенному закону Гука, опирается на теорию Н.М.Герсеванова — В.А.Флорина. Нагрузка, приложен-

ная к водонасыщенному основанию, в начальный период целиком передается на грунтовую воду [3]. Водосодержание элементарного объема водонасыщенного основания в начальный период приложения внешней нагрузки не изменяется. Следовательно, если пренебречь сжатием защемленного в воде воздуха, то в начальный момент времени грунтовый скелет может испытывать только лишь деформации изменения формы, но не объема, т.е. ϵ_{ν} + ϵ_{ν} = 0 [4].

Рассмотрим случай, когда между упругим ортотропным водонасыщенным слоем и жестким водоупором трение отсутствует. Граничные условия на поверхностях y = h и y = 0 для поставленной контактной задачи имеют вид

$$\sigma_{x}/_{y=h} = 0, \ \sigma_{y}|_{y=h} = 0, \ H = \begin{cases} \frac{P(x)}{\gamma} & \text{при } -b \leqslant x \leqslant +b; \\ 0 & \text{при } |x| > b, \end{cases}$$

$$\frac{\partial H}{\partial y}|_{y=0} = 0, \ \tau_{xy}|_{y=0} = 0.$$

Применяя к решению задачи интегральное преобразование Фурье [6]

$$\overline{f}(s) = \int_{-\infty}^{\infty} f(x)e^{isx}dx,$$

получим:

$$i\nu^{2} s \overline{\sigma}_{y} + \frac{d\overline{\tau}_{xy}}{dy} - is\gamma \overline{H} = 0,$$

$$-is\overline{\tau}_{xy} + \frac{d\overline{\sigma}_{y}}{dy} + \gamma \frac{d\overline{H}}{dy} = 0;$$

$$-n^{2} s^{2} \overline{H} + \frac{d^{2} \overline{H}}{dy^{2}} = 0;$$

$$\frac{d^{2} \overline{\sigma}_{y}}{dy^{2}} - m^{2} s^{2} \overline{\sigma}_{y} = - \upsilon \gamma s^{2} \overline{H};$$
(2)

$$\begin{split} & \overline{\sigma}_{x}\left(s,y\right)\mid_{y=h}=0, \ \overline{\sigma}_{y}\left(s,y\right)\mid_{y=h}=0, \\ & \overline{H}\left(s,y\right)\mid_{y=h} \begin{cases} \frac{\overline{P}\left(x\right)}{\gamma} & \text{при } -b \leqslant x \leqslant +b; \\ 0 & \text{при } |x| > b, \end{cases} \\ & \frac{d\overline{H}\left(s,y\right)}{dy}\mid_{y=0}=0, \ \overline{\tau}_{xy}\mid_{y=0}=0. \end{split}$$

Общий интеграл уравнения (3) имеет вид

$$H = C ch nsy + D sh nsy, (4)$$

где C и D — произвольные параметры от s.

Теперь уравнение (1) примет вид

$$\frac{d^2 \overline{\sigma}_y}{dv^2} - m^2 s^2 \overline{\sigma}_y = -v \gamma s^2 \left(C \cosh n s y + D \sinh n s y \right). \tag{5}$$

Общий интеграл уравнения (5) будем искать методом Лагранжа вариации произвольных постоянных.

Общий интеграл однородного уравнения, соответствующего уравнению (5):

$$\overline{\sigma}_{v} = A ch msy + B sh msy,$$
 (6)

где A и B — произвольные функции y.

Согласно методу Лагранжа, функции А и В определяются из системы

ch msy
$$\frac{dA}{dy}$$
 + sh msy $\frac{dB}{dy}$ = 0;
ms sh msy $\frac{dA}{dy}$ + ms ch msy $\frac{dB}{dy}$ = $-v\gamma s^2$ (C ch nsy + D sh nsy).

Решая ее, получим следующие выражения:

$$\frac{dA}{dy} = \frac{v\gamma}{m} s sh msy(C ch nsy + D sh nsy);$$

$$\frac{dB}{dy} = -\frac{v\gamma}{m} s ch msy(C ch nsy + D sh nsy).$$

Интегрируя, получим произвольные функции от У.

$$A = \frac{v\gamma}{2m} \left\{ C \left[\frac{ch (m+n)sy}{m+n} + \frac{ch (m-n)sy}{m-n} \right] + D \left[\frac{sh(m+n)sy}{m+n} - \frac{sh(m-n)sy}{m-n} \right] \right\} + A_1(s),$$

$$B = -\frac{v\gamma}{2m} \left\{ C \left[\frac{sh(m+n)sy}{m+n} + \frac{sh(m-n)sy}{m-n} \right] + D \left[\frac{ch (m+n)sy}{m+n} - \frac{ch (m-n)sy}{m-n} \right] \right\} + B_1(s),$$

где $A_1(s)$, $B_1(s)$ — произвольные параметры от s.

Подставив A и B в (6), найдем общий интеграл уравнения (5):

$$\overline{\sigma}_{y} = A_{1} chmsy + B_{1} shmsy + \frac{v\gamma}{m^{2} - n^{2}} (C ch nsy + D sh nsy).$$
 (7)

Выражения для $\overline{\sigma}_{x}$ и σ_{y} возьмем из [5]:

$$\overline{\sigma}_x = -.v^2 \overline{\sigma}_{v'} \ \overline{\sigma}_z = (\mu_{zv} - v^2 \mu_{zx}) \ \overline{\sigma}_v.$$

Из второго уравнения системы (2) найдем

$$\overline{\tau}_{xy} = \frac{1}{is} \left(\frac{d\overline{\sigma}_y}{dy} + \gamma \frac{d\overline{H}}{dy} \right).$$

Подставляя в это уравнение \overline{H} и $\frac{d\overline{v}}{dy}$ из (4) и (7) , получим трансформанту касательного напряжения

$$\overline{\tau}_{xy} = -i \left[m \left(A_1 sh \, msy + B_1 ch \, msy \right) + \frac{\upsilon + m^2 - n^2}{m^2 - n^2} \, n\gamma \left(C \, sh \, nsy + B_1 ch \, msy \right) \right]. \tag{8}$$

Граничное условие $\overline{H}/_{y=h} = \frac{\overline{P}(s)}{\gamma}$ дает

$$\frac{\overline{P}(s)}{\gamma} = C \, ch \, nsh \, + \, D \, sh \, nsh.$$

Условие на границе $\frac{d\overline{H}}{dy}/_{y=0} = 0$ позволяет получить произвольные параметры D=0, $C=\frac{\overline{P}(s)}{2}$ $\frac{1}{ch \ nsh}$.

Уравнение (4) примет вид

$$\overline{H} = \frac{\overline{P}(s)}{\gamma} \frac{ch \, nsy}{ch \, nsh} \quad . \tag{9}$$

Применяем граничное условие $\overline{\sigma}_{_{\boldsymbol{V}}}/_{_{\boldsymbol{V}}=h}=0$ в (7) :

$$A_1 ch \ msh + B_1 sh \ msh + \frac{v}{m^2 - n^2} \ \overline{P}(s) = 0.$$

Используя условие на границе $\overrightarrow{\tau}_{xy}/_{y=0}$ = 0 применительно к (8) , получим произвольные параметры

$$B_1 = 0$$
, $A_1 = -\frac{v}{m^2 - n^2} \cdot \frac{\overline{P}(s)}{ch \ msh}$.

С учетом их значений трансформанты напряжений примут окончательный вид:

$$\overline{\sigma}_{y} = \frac{v}{m^{2} - n^{2}} \overline{P}(s) \left[-\frac{ch \, msy}{ch \, msh} + \frac{ch \, nsy}{ch \, nsh} \right];$$

$$\overline{\sigma}_{x} = -v^{2} \overline{\sigma}_{y}, \ \overline{\sigma}_{z} = (\mu_{zy} - v^{2} \mu_{zx}) \overline{\sigma}_{y};$$

$$\overline{\tau}_{xy} = \frac{i\overline{P}(s)}{m^{2} - n^{2}} \left[m v \, \frac{sh \, msy}{ch \, msh} - (v + m^{2} - n^{2}) \, n \frac{sh \, nsy}{ch \, nsh} \right].$$

По формуле обращения $f(x) = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \overline{f}(s) / \frac{-ixs}{s} \, ds$ [6] , принимая во внимание, что $\overline{P}(s) = \int\limits_{-\infty}^{\infty} P(\xi) / \frac{is\xi}{s} \, d\xi$, получим:

$$\sigma_{y}(x,y) = \frac{1}{2\pi} \frac{\upsilon}{(m^{2}-n^{2})} \int_{-\infty}^{\infty} \left[-\frac{ch \, mys}{ch \, nhs} + \frac{ch \, nys}{ch \, nhs} \right] / ^{-ixs} \times$$

$$\times ds \int_{-\infty}^{\infty} P(\xi) / ^{is\xi} d\xi;$$

$$\sigma_{x} = -\upsilon^{2} \sigma_{y}, \ \sigma_{z} = (\mu_{zy} - \upsilon^{2} \mu_{zx}) \sigma_{y},$$

$$\tau_{xy}(x,y) = \frac{i}{2\pi (m^{2}-n^{2})} \int_{-\infty}^{\infty} \left[m\upsilon \, \frac{sh \, mys}{ch \, mhs} - (\upsilon + m^{2}-n^{2})n \frac{sh \, nys}{ch \, nhs} \right] / ^{-ixs} \times$$

$$\times ds \int_{-\infty}^{\infty} P(\xi) / ^{is\xi} d\xi;$$

$$H(x,y) = \frac{1}{2\pi \gamma} \left[\int_{-\infty}^{\infty} \frac{ch \, nys}{ch \, nhs} / ^{-ixs} \, ds \int_{-\infty}^{\infty} P(\xi) / ^{is\xi} d\xi + 2P(\xi) \kappa \pi \right].$$

Выполняя перестановку порядка интегрирования, получим:

$$\sigma_{y} = \frac{\upsilon}{\pi (m^{2} - n^{2})} \int_{-\infty}^{\infty} P(\xi) d\xi \int_{0}^{\infty} \left[-\frac{ch \, mys}{ch \, mhs} + \frac{ch \, mys}{ch \, nhs} \right] \cos(x - \xi) s ds;$$

$$\sigma_{x} = -\upsilon^{2} \sigma_{y}, \, \sigma_{z} = (\mu_{zy} - \upsilon^{2} \mu_{zx}) \, \sigma_{y};$$

$$\tau_{xy} = \frac{1}{\pi (m^{2} - n^{2})} \int_{-\infty}^{\infty} P(\xi) d\xi \int_{0}^{\infty} \left[m\upsilon \frac{sh \, mys}{ch \, mhs} - (\upsilon + m^{2} - n^{2}) \, n \, x \right]$$

$$\times \frac{sh \, nys}{ch \, nhs} \sin(x - \xi) s ds;$$

$$t = \frac{1}{\pi (m^{2} - n^{2})} \int_{-\infty}^{\infty} \frac{ch \, nys}{ch \, nhs} \cos(x - \xi) s ds + R(\xi) (\sigma)$$

 $H = \frac{1}{\pi \gamma} \left[\int_{-\infty}^{\infty} P(\xi) d\xi \int_{0}^{\infty} \frac{ch \, nys}{ch \, nhs} \, \cos(x - \xi) \, sds + P(\xi) \, \kappa \pi \right].$

Интегрируя по переменной s [7], получим решение задачи при воздействии нормальной нагрузки P(x) в однократных интегралах:

$$\sigma_{y} = \frac{1}{h} \frac{v}{(m^{2} - n^{2})^{-\infty}} P(\xi) \left[-\frac{1}{m} \frac{\cos \frac{\pi y}{2h} \cdot ch \frac{\pi (x - \xi)}{2mh}}{\cos \frac{\pi y}{h} + ch \frac{\pi (x - \xi)}{mh}} + \frac{1}{n} \frac{\cos \frac{\pi y}{2h} \cdot ch \frac{\pi (x - \xi)}{2nh}}{\cos \frac{\pi y}{h} + ch \frac{\pi (x - \xi)}{nh}} \right] d\xi;$$

$$\begin{split} &\sigma_{x} = -\nu^{2} \sigma_{y'}, \ \sigma_{z} = (\mu_{zy} - \nu^{2} \mu_{zx}) \, \sigma_{y}; \\ &\tau_{xy} = \frac{1}{h \, (m^{2} - n^{2})} \int_{-\infty}^{\infty} P(\xi) \, \left[\upsilon \, \frac{\frac{\sin \frac{\pi y}{2h} \, sh \, \frac{\pi \, (x \cdot \xi)}{2mh}}{\cos \frac{\pi y}{h} + ch \, \frac{\pi \, (x - \xi)}{mh}} \right. \\ &- (\upsilon + m^{2} - n^{2}) \, \frac{\sin \frac{\pi y}{2h} \, \cdot sh \, \frac{\pi \, (x - \xi)}{2nh}}{\cos \frac{\pi y}{h} + ch \, \frac{\pi \, (x - \xi)}{nh}} \, \left] d\xi; \\ &H = \frac{1}{\pi \gamma} \, \left[\frac{1}{nh} \int_{-\infty}^{\infty} P(\xi) \, \frac{\cos \frac{\pi y}{2h} \, ch \, \frac{\pi \, (x - \xi)}{2nh}}{\cos \frac{\pi y}{h} + ch \, \frac{\pi \, (x - \xi)}{nh}} \, d\xi + \kappa P(\xi) \, \right]. \end{split}$$

Подставляя в вышеуказанные формулы значения равномерно распределенной нагрузки $P(\xi) = P_0$ и выполняя интегрирование и простейшие преобразования, найдем распределение напряжений и напорной фильтрационной функции в слое водонасыщенного анизотропного грунта толщиной h, лежащего на жестком водоупоре:

$$\sigma_{y} = \frac{vP_{0}}{\pi (m^{2} - n^{2})} \left\{ \left[\operatorname{arctg} \frac{sh \frac{\pi (x - b)}{2mh}}{\cos \frac{\pi y}{2h}} - \operatorname{arctg} \frac{sh \frac{\pi (x + b)}{2mh}}{\cos \frac{\pi y}{2h}} \right] - \left[\operatorname{arctg} \frac{sh \frac{\pi (x - b)}{2nh}}{\cos \frac{\pi y}{2h}} - \operatorname{arctg} \frac{sh \frac{\pi (x + b)}{2nh}}{\cos \frac{\pi y}{2h}} \right];$$

$$\sigma_{x} = -v^{2}\sigma_{y}, \ \sigma_{z} = (\mu_{zy} - v^{2}\mu_{zx})\sigma_{y};$$

$$\tau_{xy} = \frac{P_{0}}{2\pi (m^{2} - n^{2})} \left\{ vm \ln \frac{\left[\sin \frac{\pi y}{2h} + ch \frac{\pi (x - b)}{2mh} \right] \left[\sin \frac{\pi y}{2h} - ch \frac{\pi (x + b)}{2mh} \right]}{\left[\sin \frac{\pi y}{2h} - ch \frac{\pi (x - b)}{2mh} \right] \left[\sin \frac{\pi y}{2h} + ch \frac{\pi (x + b)}{2mh} \right]} - \left(v + m^{2} - n^{2} \right) n \ln \frac{\left[\sin \frac{\pi y}{2h} + ch \frac{\pi (x - b)}{2nh} \right] \left[\sin \frac{\pi y}{2h} - ch \frac{\pi (x + b)}{2nh} \right]}{\left[\sin \frac{\pi y}{2h} - ch \frac{\pi (x + b)}{2nh} \right]} \right\};$$

$$H = \frac{P_{0}}{\gamma} \left\{ \frac{1}{\pi} \left[\operatorname{arctg} \frac{sh \frac{\pi (x + b)}{2nh}}{\cos \frac{\pi y}{2h}} - \operatorname{arctg} \frac{sh \frac{\pi (x - b)}{2nh}}{\cos \frac{\pi y}{2h}} \right] + \kappa \pi \right\},$$

где $\kappa = 1$ для $-b \le x \le b$ и $\kappa = 0$ для |x| > b при y = h; при y < h $\kappa = 0$.

Данные формулы отвечают поставленным граничным условиям, уравнениям равновесия и неразрывности. Используя их, получим распределение напряжений и фильтрационного напора в любой точке ортотропного водонасыщенного слоя грунта, подстилаемого жестким водоупором.

ЛИТЕРАТУРА

1. Е г о р о в К.Е. Распределение напряжений и перемещений в основании конечной толщины // Механика грунтов. — $1961. - N^{\circ}$ 43. — С. 42-63. 2. С о б о л е в с к и й Ю.А. Водонасыщенные откосы и основания. — Минск, 1975. - 398 с. 3. Г е р с е в а н о в Н.М. Основы динамики грунтовой массы. — М., 1937. - 241 с. 4. Ф л о р и н в.А. К вопросу о гидродинамических напряжениях в грунтовой массе. — М., 1938. - 5 с. 5. С о б о л е в с к и й С.В. Распределение напряжений и напорной фильтрационной функции в анизотропном водонасыщенном основании в начальный период приложения внешней нагрузки // Водное хоз-во и гидротехнич, стр-во, 1985. — Вып. 14. — С. 1-3. 6. С н е д д о н И.Н. Преобразования Фурье. — М., 1955. — 667 с. 7. Г р а д ш т е й н И.С., Р ы ж и к И.М. Таблицы интегралов сумм, рядов и произведений. — М., 1963. — 11 с.

УДК 502 (083.74)

И.Е.КУКСИН, канд. техн. наук, С.И.ГОРБАЧЕВА (ЦНИИКИВР)

МЕЖДУНАРОДНЫЕ СТАНДАРТЫ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ

Проблема охраны окружающей среды носит ярко выраженный международный характер. Особенно это касается таких основных жизненно важных ее компонентов, как атмосферный воздух и водная среда. Это обусловлено общностью интересов различных стран при использовании водных ресурсов рек, озер, водохранилищ и морей, а также атмосферного воздуха. Вопросы загрязнения водной и воздушной среды давно уже стали предметом исследования и изучения в рамках различных международных организаций. Важную роль в деле унификации требований по вопросам охраны окружающей среды играет стандартизация. Именно стандарт в силу своего статуса, как обязательного нормативного документа, может оказать большую помощь в деле унификации требований по охране среды.

Разработкой стандартов по охране окружающей среды занимаются многие международные организации. Среди них В семирная организация здравоохранения (ВОЗ), международная организация по водоснабжению, продовольственная и сельскохозяйственная организации ООН и др. Так, например, в рамках ВОЗ разработаны международные и европейские стандарты питьевой воды, справочник "Важнейшие методы защиты качества вод" и т.п. [1, 2]. Необходимо отметить, что советский стандарт качества питьевой воды предъявляет более жесткие требования к концентрации химических веществ, встречающихся в природных водах или добавленных к воде в процессе ее обработки. Это очевидно, если сравнить хотя бы европейские стандарты питьевой воды [2]с ГОСТ 2874—82 [3], который введен в действие с 01.01.1985 г. Так, например, по ГОСТ 2874—82 концентрация свинца не должна превышать