кие расчеты методом Монте-Карло / Под ред. А.Ш.Резниковкого. - М., 1969. З. Гидрологические расчеты при проектироминии водохранилищ СССР / И.В.Боголюбова, В.С.Вугинкий, Р.В.Донченко, Б.С.Цейтлин. - Мат-лы Международн. имп. по специфическ. аспектам гидролог. расчетов для водохоз. проект. Л., 1979.

УДК 628.221

Е.А.Казанли, инж. (БПИ)

К РАСЧЕТУ ИНТЕНСИВНОСТИ ДОЖДЕЙ ПРИ ПРОЕКТИРОВАНИИ КАНАЛИЗАЦИИ

Количественную оценку интенсивности ливней при расчете канализационных сетей рекомендуется осуществлять путем специильной обработки записей самопишущих дождемеров за многолетний период. В случае отсутствия таких наблюдений или их краткосрочности строительные нормы и правила (СНиП-П-32-74) рекомендуют пользоваться картами и формулами. Так, для опрелеления интенсивности в таких условиях применяется формула

$$q = \frac{20^{n} q_{20} (1 + c \lg p)}{t^{n}}, \qquad (1)$$

где q - средняя максимальная интенсивность дождя, n/c на l га; t - продолжительность дождя, мин; n - параметр, характеризующий уменьшение средней интенсивности c увеличением продолжительности при заданном периоде однократного превышения расчетной интенсивности дождя p; q_{20} - интенсивность дождя, соответствующая продолжительности 20 мин при p=1 год; c - параметр, характеризующий вероятность интенсивности.

Из формулы (1) следует, что степень точности определения интенсивности будет зависеть от надежности данных о величинах параметров c, q_{20} , n, которые рекомендуется определять по мелкомасштабным картам—схемам. На картах приведена средняя величина параметра n для p в пределах $0,33\div10$. Однако их ходе определения этой величины замечено, что в ряде пунктов и регионов она устойчиво меняется в зависимости от изменения p, и особенно при p < 1. Но пока имеются рекомендации по учету изменения n только для Средней Азии и Азербайджана по формуле

 $n = n_1 p^K, \tag{2}$

где n_1 - величина параметра при р, равном одному году; k -

параметр, характеризующий изменчивость выпадения осадков и способный изменяться в указанном регионе от. 0,05 до 0,15.

В ряде литературных источниковимеются указания на то, что и за пределами этого региона величина n не остается постоянной при изменении p [1, 2].

В действующих же СНиП на территории БССР показана одна изолиния, соответствующая значению n=0.75. Обработка записей плювиографов за 16-22 года в 11 пунктах на территории БССР показала, что n изменяется от 0.53 до 0.81 при различных р [3]. Это нельзя не учитывать, так как при определении интенсивности по среднему значению n=0.75 вероятность ощибки составляет до 33%. Следовательно, в пунктах на территории БССР, где не ведутся наблюдения с помощью самопишущих дождемеров, пользуясь для определения n только картами, можно допустить значительные ощибки. В целях устранения этого недостатка, основываясь на данных обработки записей плювиографов, разработана формула для определения величины n по сумме осадков теплого периода (апрель—октябрь):

 $n_{\rm cp}=b\pm aH_{\rm m}$, (3) где $n_{\rm cp}$ — среднеарифметическая величина при р от 0,33 до 10; $H_{\rm m}$ — сумма осадков за апрель — октябрь (берется по ближайшей метеорологической станции), мм; а и b — коэффициенты, величина которых определяется по табл. 1 в зависимости от суммы осадков теплого периода (апрель — октябрь), а на севере — за период положительных среднемесячных температур.

Табл. 1. Величины коэффициентов а и b

Период,	Сумма осад- ков Н _т по	Коэффицие	нты	Возможные от- клонения п от		
за который взяты осадки	т различным группам	a b		определенных путем обработ- ки записей, % В сред- макси-		
V	районов, мм			нем	мально	
Апрель — октябрь " " " "	361-482 223-358 102-219 40-101 439-710 126-206 223-386	0,00106 0,00119 -0,00061 -0,00215 -0,00055 0,00035	0,24 0,33 0,81 0,79 0,84 0,50 0,50	4 5 6 7 6,5	10 10 10 8 10 11	

Обобщение данных по 100 пунктам на территории СССР по-казывает, что формула (3) применима и за пределами БССР. Формула не рекомендуется для определения n в пунктах, расположенных в горах до определения величин коэффициентов а и n. Но, как уже было сказано, величина n может существенно отличаться от n, соответствующих различным величинам n.

Анализ данных обработки записей дождей на территории БССР [3] позволил предложить формулу для перехода от n_{CP} к n_{D} :

 $n_{p} = y n_{cp}, \tag{4}$

где у - коэффициент, зависящий от периода однократного превышения расчетной интенсивности (табл. 2).

Табл. 2. Величина у при различных р

p	2-10	1	0,5	0,33
у	1,03	1,06	0,93	0,88

Отклонения рассчитанных по формуле (4) $n_{\rm p}$ от определенных путем обработки записей в среднем не превышают 3-7%.

Возникает вопрос: можно ли применять формулу (4) для определения и и за пределами БССР.

Ответ на этот вопрос может дать анализ табл. 3. В таблице показаны пункты, в которых параметр к, входящий в формулу (2), имеет неодинаковые значения. Для Тарту (Эстония) его величина может быть принята равной О, Баку - О,1, Минска при р от 1 до 10 его значение близко к О, а от О,5 до О,33 - к О,1. По некоторым показателям величина к для Волгограда, Свердловска, Новосибирска близка к О,О5.

Как видно из табл. 2, расхождения между величиной n_p , определенной по формулам (2) и (4), невелики и не превышают 14%, а в среднем по всем пунктам равны 3-4%.

Экстремальные отклонения (11-14%) относятся к Тарту и Баку, что объясняется спецификой изменения n, обусловленной характером климатических условий: величина n в Баку убывает при изменении p от 10 до 0,33. В Тарту, наоборот, с убыванием p от 10 до 0,33 n возрастает. В Минске имеют место обе тенденции: n возрастает при изменении p от 10 до 1 и убывает при изменении p от 10 до 1 и убывает при изменении p от 1 до 0,33. Отсюда понятно, почему наибольшие расхождения наблюдаются на концевых участках рядов.

Следует отметить, что величины n, определенные по формуле (2) при величине k = 0,05 и формуле (4), существенных расхождений не дают.

Табл. 3. Величина n в некоторых пунктах

П	'n	np						
Пункт	n _{cp}	p ₁₀	p ₅	р ₃	^p 2	p ₁	^p 0,5	^р о,33
Баку обработка запи–	0,59	0,69	0,65	0,62	0,59	0,55	0,51	0,49
сей формула (4)	0.57	0.59	0.59	0.59	0,59	0.60	0.53	0,51
отклонение, % Тарту	4		9	5		9	4	4
обработка запи- сей	0,66	0,65	0,65	0,65	0,65	0,66	0,68	0,68
формула (4) отклонение, %	0,67 2	-			0,69 6			0,59 13
формула (2), k = O					0,66			0,66
отклонение, % Минск	0	2	2	2	2	0	3	3
обработка запи- сей	0,72	0,76	0,74	0,76	0,76	0,73	0,67	0,64
формула (4) отклонение, %	0,71		0,73 1	-	0,73 4	-	0,66 1	0,63 2
формула (2), k = 0,05					0,76			0,69
отклонение, % Волгоград	4	7	7	1	Ο	Ο	6	8
формула (4) формула (2),							0,64 0,68	
k = 0,05 отклонение, %	4	11	7	4	1	4	6	8
Свердловск формула (4)	0.76		0.78	0.78	0.78	0.81	0,69	0.66
формула (4) формула (2), к = 0,05							0,71	
отклонение, % Новосибирск	1	4	1	1	3	11	3	5
формула (4) формула (2),							0,67 0,70	
k = 0,05 отклонение, %	3	8	5	3	1	5	4	6

Однако при пользовании формулой (2) необходимо знать величину n при p,= 1 году, определяемую путем обработки занисей дождей (как и величину k), что не везде возможно. В же время, зная количество осадков теплого периода, по формулам (3) и (4) и табл. 1 и 2 можно с достаточной степенью гочности определить величины n_p и n_{cp} не только на территории БССР, но и на всей Европейской части СССР, в Уральском n Западно-Сибирском регионах, так как климатические характеристики на территории БССР во многом схожи с их характеристиками (табл. 4).

По мере же накопления фактических данных о величинах n р шачения у, приведенные в табл. 3, могут быть уточнены применительно к особенностям климатических условий.

До последнего времени мало уделялось внимания расчету ингенсивности часто повторяющихся дождей при р < 0,33. Однако и связи с необходимостью очистки поверхностных сточных вод с селитебных территорий городов и других населенных пунктов перед сбросом их в водоемы из коллекторов при раздельной системе канализации вопрос этот становится весьма актуальным.

В литературе [5] для определения интенсивности дождей при $\mu < 0.33$ рекомендована формула

$$q_{p} = \frac{20^{n} q_{20} (m / p - \tau)}{t^{n} (1 - \tau)},$$
 (5)

Табл. 4. Основные характеристики осадков на территории СССР [4]

	Диапазон	Средне-	Суточный	Максималь-
Регионы	осадков за	суточ-	максимум	ная 20-ми-
I el nondi	апрель —	ный	обеспе-	нутная ин-
	октябрь,	макси-	ченностью	тенсив-
	MM	мум, мм	63%, мм	ность, мм
Белорусский	370-482	34-41	25-31	0,8-2,2
Центральный	372-429	29-40	24-32	1,0-1,8
Юго-Западный,	236-403	33-42	27-36	0,7-1,9
Лонецко-Приднеп-				
ровский				•
Северо-Западный	335-462	27-33	22-30	0,6-1,9
Прибалтийский	402-471	32-39	29-30	0,8-1,1
йынжОІ	236-294	35-39	29-30	0,8-1,1
Западно-Сибирский	324-372	26-34	22-30	0,7-1,1

где $\mathbf{q}_{\,\mathrm{p}}$ - интенсивность дождя при $\,\mathrm{p}<0.33\,$ л/с на $1\,$ га; $\,\mathrm{\tau}$ величина, связанная с климатическими условиями; т - показатель корня (может изменяться от 2 до 4).

Формула выведена на основании обработки многолетних записей плювиографами дождей, выпавших в Ленинграде, и подтверждена данными наблюдений по Архангельску и Таллину, т. е. приморских пунктах, где ход выпадения и интенсивность дождей имеют свою специфику по отношению к пунктам, удаленным морских побережий и крупных озер. Для этих условий $\tau = 0.2 \, \text{m} = 3.$

В других пунктах рекомендуется принимать т в зависимости от величины параметра с в пределах 0,2-0,27, а m = 3. Однако, как показала обработка записей дождей в Минске, Пинске, Горках (Белоруссия), m = 2,55, что существенно влияет величину интенсивности. Следовательно, до разработки точного метода определения величин т при расчете интенсивности дождя по формуле (5) возможны существенные ошибки.

В условиях БССР $\mathbf{q}_{\mathbf{p}}$ при $\mathbf{p} < \mathbf{0}$,33 в пунктах, где не дутся записи дождей плювиографами, величину q п целесообразно определять по формуле

$$q_{p} = \frac{A_{p}}{n_{p}} [6]. \tag{6}$$

Величину А при р = 0,25-0,07 рекомендуется рассчитывать по формуле

$$A_{p} = 20^{n_{cp}} q_{20} \left(\frac{n_{p}}{n_{cp}}\right)^{2} p^{\mu}, \qquad (7)$$

где μ - показатель степени равен 0,57 для условий БССР и для пунктов, где коэффициент с, входящий в формулу (1), изменяется от 0.85 до 1.0. Там же, где c = 1.1 - 1.2, величина $\mu = 0.72$.

При p = 0,05÷0,03
$$A_p$$
 следует рассчитывать по формуле $A_{p\ 0,05-0,03} = 20^{n_{cp}} q_{20}(2,2p-0,033);$ (8)

 n_p при p < 0.33 – по формуле

$$n_p = n_{cp} p^{0,11}$$
 (9)

До накопления данных формулы (6)-(9) за пределами БССР можно применять там, где сумма осадков за апрель - октябрь равна 402-482 мм, $q_{20} = 80-103$ л/с на 1 га, $n_{cn} = 0,65-$ О,74, т. е. в сходных условиях.

Уточнение расчетной интенсивности дождей на территории БССР позволяет снижать диаметры труб на один сортамент в сравнении с расчетами по рекомендации СНиП в периоды превышения расчетной интенсивности $p_{1-0,33}$. Это способствует снижению капитальных затрат до $3,0\div8,0$ тыс. руб. на 1 км водосточной коллекторной сети. Возможна экономия приведенных затрат на 850-1650 руб. ежегодно на тот же измеритель.

Таким образом, проведенные исследования по уточнению параметра п, входящего в формулу для расчета интенсивности дождей, позволяют более обоснованно выполнять расчеты ливневой канализации не только на территории Белоруссии, но и далеко за ее пределами. Это найдет применение в первую очередь при проектировании водосточной сети в усадьбах колхозов, совхозов, на промышленных площадках, особенно в малообжитых районах СССР и позволит значительно снизить сметную стоимость строительства водосточной сети.

Литература

1. Молоков М.В., Гулиев Ф.С. Новые данные по нормам интенсивности дождей для расчета дождевой канализации. - Водоснабжение и санитарная техника, 1970, № 1. 2. Молоков М.В., Кичев С.Н. Нормы интенсивности дождей для юговостока Европейской территории СССР. - Информационно-реферативный сборник. Сер. ІУ "Проектирование водоснабжения канализации". - М., 1976, вып. 4 (102). 3. Молоков М.В., Казанли Е.А. Определение параметра и по сумме теплого периода в различных зонах СССР. - В сб.: Проблемы очистки и использования природных и сточных вод. -1975. 4. Справочник по климату СССР. Влажность воздуха. атмосферные осадки, снежный покров. - Л., 1968. 5. Молоков М.В. Вывод формулы интенсивности дождей для расчета ливнеспусков новой канализации г. Ленинграда. - В сб.: Санитарная техника. Л., 1949, вып. 1/4. 6. Казанли Е.А. Расчет интенсивности дождей частой повторяемости. - В сб.: Проблемы использования и охраны вод. - Минск, 1979.