
УDC 004.85
DOI: 10.21122/2309-4923-2024-4-13-20

RULKO E.V.

COMPLEXIFICATION THROUGH GRADUAL INVOLVEMENT AND REWARD
PROVIDING IN DEEP REINFORCEMENT LEARNING

Military Academy of the Republic of Belarus
Минск, Республика Беларусь

Training a relatively big neural network within the framework of deep reinforcement learning that has enough
capacity for complex tasks is challenging. In real life the process of task solving requires system of knowledge, where
more complex skills are built upon previously learned ones. The same way biological evolution builds new forms
of life based on a previously achieved level of complexity. Inspired by that, this work proposes ways of increasing
complexity, especially a way of training neural networks with smaller receptive fields and using their weights as pri-
or knowledge for more complex successors through gradual involvement of some parts, and a way where a smaller
network works as a source of reward for a more complicated one. That allows better performance in a particular case
of deep Q-learning in comparison with a situation when the model tries to use a complex receptive field from scratch.

Kлючевые слова: deep reinforcement learning, Q-learning, curriculum learning, distillation model, reward
shaping

Introduction

Reinforcement learning (RL) offers a powerful
framework for decision-making tasks, where agents
learn from interactions with an environment to improve
their performance over time. The agent observes states
and rewards from the environment and acts with a
policy that maps states to actions. Deep Reinforcement
Learning (DRL) denotes the combination of deep
learning with RL. DRL uses deep neural networks
to train powerful function approximators to address
complicated domains [1]. But DRL still faces difficulties,
especially when convergence of deep neural networks
requires learning complicated concepts in environments
with sparse feed-back. That difficulty has some intuitive
explanation. Imagine a human baby behind a wheel with
the target to drive home and the amount of attempts that
it would take to achieve some positive feedback. Or the
task of getting some chemical substance in a lab through
the pu trial and error method by a person who is totally
unfamiliar with chemistry. These processes require
learning consecutive sets of skills, where each set is built
upon previously learned ones. It’s especially attributable
to humans and high-level animals. For a person it
requires learning how to control bodily functions,
getting basic knowledge from parents, kindergarten, and
school and so on. A fox baby isn’t able to hunt, until
acquiring all the necessary skills. In addition to learning
procedure, defining a structure of a neural network of
sufficient capacity, that can learn the set of consecutive
tasks and effectively converge, also represents a hurdle.
The process of evolu-tion in nature generally goes from
simple neural structures to more complex. Inspired by
that, this work describes an example Complex-ification
Through Gradual Involvement And Reward Providing
used for the game of Snake within the framework of deep
Q-learning.

Related Work

Training a model on examples of increasing
difficulty, progressively providing more challenging data
or tasks as the policy improves, is called Curriculum
Learning (CL) [2]. As the name suggests, the idea behind
the approach borrows from human education, where
complex tasks are taught by breaking them into simpler
parts. This is used now in advanced spheres like teaching
quadrupedal robots to perform complex movements [3],
quantum architecture search [4] and many others.
There are a lot of strategies of CL. An approach that
uses separate policies for each skill [5] and a similar
one that distils the specialist controllers into a single
generalist transformer policy [6] both seem to be closest
to the approach described in the current paper because of
connection between successive teaching and allocating
some network capacity for newly formed skills.
Another related approach is called Progressive Neural
Networks [7]. A progressive network is composed of
multiple columns, and each column is a policy network
for one specific task. It starts with one single column for
training the first task, and then the number of columns
increases with the number of new tasks. While training
on a new task, neuron weights of the previous columns
are frozen and representations from those frozen tasks
are applied to the new column via a collateral connection
to assist in learning of a new task [1]. Also the idea of
Distillation Model involves training a smaller model first
and then building a big one that will imitate the first one in
order to kick start the large model’s learning progress [8].
In spite of some similarities, the suggested approach
of Complexification Through Gradual Involvement
unlike others uses successive allocation of the network
capacity for a current single task through increasing
the perception field, i. e. the state space. Reinforcement
Learning from Human Feedback (RLHF) [9] learns from

SYSTEM ANALYSIS 13

4, 2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

human feedback instead of relying on an engineered
reward function. Reward Providing unlike that uses a
less complex network instead of a human expert as a
source of reward for training a more complex one.

Complexification Through Gradual
In-volvement And Experimental Studies

Complexification can be performed in different
directions: just network capacity, the amount of sensory
information (state vector) and subsequent network
capacity, and the action vector. In the current work only
the case of increasing the size of a state vector is con-
sidered. Suggested approach is described based on the
game of Snake [10], which is a modified version of the
original game [11]. The screen of the game is represented
on Figure 1. Initially as an input vector the snake takes
the following 11 parameters that are relative to its head’s
position [10]: danger straight within 1 step, danger right
within 1 step, danger left within 1 step, moving left,
moving right, moving up, moving down, food left, food
right, food up, food down.

Figure 1. The Snake game

The result of training is represented on Figure 2.

Figure 2. Training result for 11 values

It takes approximately 100 games to converge
and the average result is about 35 scores. Also it requires
epsilon-greedy strategy for exploration during the first
80 epochs. Without it the network doesn’t converge at
all. The analysis of the way the snake ends up shows
that it tends to coil in itself – Figure 3. That situation is

supposedly attributable to the inability of the snake to
get understanding of the location of its own parts. Let’s
increase the input vector by adding the following pa-
rameters:

- snake tail to the right of the head;
- snake tail to the left of the head;
- snake tail to the front of the head;
- relative distance to the right wall;
- relative distance to the left wall;
- relative distance to the front wall;
- last turn left;
- last turn right.

Figure 3. Coiling up

Now the input vector is comprised of 19
parameters. The result of training is represented on
Figure 4.

Figure 4. Training result for 19 values

Now it takes approximately 150 games to converge
and the average result is about 62. If we want to start the
learning process of a model with a bigger input vector
not from scratch, but with weights of a smaller one, the
procedure in this case is straightforward. For the current
network architecture it requires copying of the weights of
the second fully connected layer (FC 2) and the weights
of the first fully connected layer (FC 1) concatenated
with a tensor of random values of shape (8, 256) in
order to fit the newly formed FC 1 layer. The scheme
of the process is presented on Figure 5. The number
of input and output features of each layer is specified
in parenthesis.

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2024

14 СИСТЕМНЫЙ АНАЛИЗ

SYSTEM ANALYSIS 15

4, 2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Figure 5. Weights loading

Modern frameworks like PyTorch provide a
convenient way of loading weights from one model to
another. The result of train-ing of the network with loaded
weights from the experiment on Figure 2 is represented
on Figure 6.

Figure 6. Training result after weights loading

It demonstrates that with prior knowledge it takes
approximately 50 games to converge to even better scores
in comparison with the experiment on Figure 4, which is
about 3 times less in terms of count of games. Due to the
nature of neural networks, they can rely only on known
part of the input vector, performing rational activity in
terms of the environment and simultaneously figuring
out the way of applying newly added part of the input
vector. It’s important to note that it doesn’t require any
initial exploration as it were in both cases with a smaller
and bigger vectors starting from scratch. But it seems
that in more complicated scenarios a way of explor-ing
possibilities that come with added input vector might be
required. The next step is to add a convolutional (2d) head
to the neural network that will partially observe the envi-
ronment. For this case a bit different approach will be
demonstrated, which involves turning off some advanced
parts of the neural network, like the convolutional head
in this example, while training the initial smaller parts. In
essence, this process is similar to training a smaller neural
network and loading its weights into a correspondent part
of a bigger one. In order to make it easier for the agent to
learn, the convolutional head is provided not with the full
environment, but with black and white cropped fragment
of shape (8, 8) around snake’s head, rotated according to

its current direction – Figure 7. There are several sequen-
tial stages of training. During a “Zeros” stage the output
of the convolutional head is always a tensor of zeros and
the head is frozen. In this case the agent is supposed to
rely only on the 1d head. A “Noise” stage involves pro-
cessing the image by the frozen convolutional head with
randomly initialized weights.

Figure 7. Input preprocessing

The absence of any structured useful information
about the environment from 2d head supposedly
will make the rest of the network insensitive to any
information from that head. The initial intent of that is
to prevent possible sporadic behavior of the network on
the transition between the previous stage and involving
the 2d head, when the network has been trained with the
constant tensor of only zeros and it unexpectedly gets a
tensor of random values. An “Involving” stage implies
freezing the 1d head and unfreezing the 2d head in order
to provide some prior knowledge and kick start the
learning process of 2d head. A “Both heads” stage in-
volves simultaneous training of both 1d and 2d heads.
Architecture of the neural network (without ReLUs) is
presented on Figure 8.

A set of experiments has been conduct-ed in
order to practically evaluate perfor-mance, depending
on redistribution of the entire amount of 3000 games
between different stages using fixed hyperparameters.
Each experiment the agent uses epsilon-greedy strategy
during first 280 games and then the greedy one.

Figure 8. Network architecture

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2024

The first experiment involves training the agent
during all of the episodes (games) using a “Zeros” stage,
which means it effectively uses only 1d head – Figure 9.

Figure 9. Training using only “Zeros” stage

Unsurprisingly, the result doesn’t seem much
different from Figure 2. It has the average score of 33
over 100 last games. The network just learns to ignore a
tensor of zeros from the 2d head and rely only on 1d part
that uses 11 values, the same as in case on Figure 2. It’s
necessary to mention that in spite of pretty stable average
score, the dispersion of scores for each game (blue color)
is pretty high.

The second experiment involves train-ing the
agent during all of the episodes using the “Both heads”
stage, which means it uses both heads from the beginning.
The result of training is presented on Figure 10.

Figure 10. Training using only “Both heads” stage

It has the average score of 36 over 100 last games.
The result is not far from the pr\vious experiment, which
means that the network isn’t able to utilize data from the
2d head, “turns that head off”, and still relies only on 1d
head as in the case with “Zeros” stage.

The third experiment involves training the agent
on 500 games using “Zeros” stage and 2500 games using
“Both heads” stage – Figure 11. In this case during the

first stage the network learns how to utilize the 1d head
and then, with its weights trained, involves the second
one in the training process. The average score over 100
last games is 54, which is better than in the previous
cases. The important point here is that such a score can’t
be achieved by training of two heads simultaneously.

Figure 11. Training using “Zeros” and “Both heads” stages

The forth experiment involves training the agent
on 500 games using “Zeros” stage, 1000 games using
“Involving” stage, and 1500 games using “Both heads”
stage. The result of the experiment is demonstrated on
Figure 12.

Figure 12. Training using “Zeros”, “Involving” and “Both
heads” stages

The final average score is 54 and is the same
as in the previous experiment, which means that using
“Involving” stage doesn’t improve the results.

The fifth experiment involves training the agent
on 500 games using “Zeros” stage, 500 games using
“Noise” stage, 500 games using “Involving” stage, and
1500 games using “Both heads” stage. The result of the
experiment is demonstrated on Figure 13.

16 СИСТЕМНЫЙ АНАЛИЗ

Figure 13. Training using “Zeros” and “Both heads” stages

Here also the final average score of 52 doesn’t
deviate too much from the third experiment, which
means that using “Noise” stage also doesn’t improve the
results.

Complexification Through Reward Providing
And Experimental Studies

Transition from a simpler neural network to a
more complicated one can also be conducted through
reward shaping. In the first experiment the network is
provided with the entire game screen rotated relatively
to its head – Figure 14. With the established set of
hyperparameters, using epsilon-greedy strategy for
exploration during first 5000 games, the network doesn’t
converge at all. At the same time, the experiment that
has been described earlier, of using liner layer with the
manually constructed 11 values demonstrates the result
with an average score about 35 (Figure 2).

Figure 14. Full receptive field

The network in this case has the following
architecture – Figure 15.

The suggested mechanism of Complexification
Through Reward Providing involves usage of predicted
value function from a smaller neural network, trained
during the first stage in the same environment, as a part
of reward for a more complicated one, and is presented
on Figure 16.

Figure 15. Network architecture

Figure 16. Mechanism of complexification through reward
providing

The result of training when the reward is the
maximum value of a Q-function for a given state from a
smaller network is presented on Figure 17.

Figure 17. Training only with the reward provided

SYSTEM ANALYSIS 17

4, 2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

The result of training with an equal contribution
of a real reward and the maximum of Q-function for a
given state from the smaller network is the following –

Figure 18 (upper image). The same experiment but
with longer exploration phase is presented on Figure 18
(lower image).

It has an average score about 50 which is better
in comparison with the case with just using 11 values.
It means that the result of a bigger network trained using
some reward function provided by the smaller network
is better than the result of the smaller network in that
environment. In this particular case it’s connected with
a richer state space that a bigger network can observe,
but more importantly, the bigger network doesn’t
converge at all from scratch without using such a
gimmick.

The result of training the network on the full
receptive field from scratch without reward providing
is presented on Figure 19. Figure 19. Training with equal contribution of rewards

Figure 18. Training with equal contribution of reward

Complexification Through Assistance Providing
And Experimental Studies

In the previous case the bigger network acted
in the environment but it was rewarded by a smaller
one. It corresponds to a script: “You’ll act and I’ll tell
you what’s good or bad”. For the purpose of research
it seems reasonable to consider an alternative scenario

which corresponds to: “You’ll be provided with some
experiments by me, and the environment will tell you
the outcome of certain actions”. During the second
stage of training actual behavior is generated by a
pretrained assistant model, and the agent is trained
on the experience replay buffer, but instead of input
vector of 11 parameters it uses the corresponded 2d
representation – Figure 20.

Figure 20. Training with equal contribution of rewards

18 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2024

The agent is switching between the aforemen-
tioned way of training and training on its own in order to
assess its performance. The result of training in this case
is worse than in the previous one – Figure 21.

Figure 21. Training with assistance providing

Conclusions And Future Work
This work is based on considering a pretty trivial

example of the Snake game and describes the process of
using weights of a previously trained network as prior

knowledge for a more complicated one, as well the pro-
cess of reward providing. It was shown that the suggested
approaches provide a way of achieving higher scores
without any hyperparamenter search in comparison with
the cases of training complexified networks from scratch.
Future work requires conducting a more extensive set
of experiments, including different environments and
RL algorithms for getting conclusive information about
applicability of the approaches. It’s necessary to consider
different possible dimensions of increasing complexity,
not only what’s directly connected with a receptive
filed, i. e. a state vector. It seems that in this particular
case of the Snake game we can use not a single current
state of the game, but also several previous states and
gradually add some recurrent part to the network. Future
research can also be dedicated to finding automatically
the necessary directions of extending network capacity,
unlike it was done manually in the current work. In case
of reward provider it also seems reasonable to shift the
reward from a smaller network to the real one from the
environment over time of training and further research
can be dedicated to that, as well as to use a chain of
successively trained networks where each previous one
provides reward construction for the next one. Usage of
a combination of the reward providing and assistance
providing techniques may also be studied in the future.

REFERENCES

1. Zhuangdi Zhu et al. Transfer Learning in Deep Reinforcement Learning: A Survey. 2023. arXiv: 2009.07888.
2. Petru Soviany et al. Curriculum Learning: A Survey. 2022. arXiv: 2101.10382.
3. Vassil Atanassov et al. Curriculum-Based Rein-forcement Learning for Quadrupedal Jumping: A Reference-free

Design. 2024. arXiv: 2401.16337.
4. Yash J. Patel et al. Curriculum reinforcement learning for quantum architecture search under hardware errors. 2024.

arXiv: 2402.03500.
5. David Hoeller et al. ANYmal Parkour: Learning Agile Navigation for Quadrupedal Robots. 2023. arXiv: 2306.14874.
6. Ken Caluwaerts et al. Barkour: Benchmarking Animal-level Agility with Quadruped Robots. 2023. arXiv: 2305.14654.
7. Andrei A. Rusu et al. Progressive Neural Networks. 2022. arXiv: 1606.04671.
8. Enric Boix-Adsera. Towards a theory of model distillation. 2024. arXiv: 2403.09053.
9. Timo Kaufmann et al. A Survey of Reinforcement Learning from Human Feedback. 2024. arXiv: 2312. 14925 [cs.LG].

URL: https : / / arxiv. org/ abs/2312.14925.
10. E. Rulko. Complexification Through Gradual Involvement in Deep Reinforcement Learning. https://github.com/

Eugene1533/snake-ai- pytorch-complexification. 2024.
11. P. Loeber. Reinforcement Learning With PyTorch and Pygame. https : / / github . com / patrickloeber/snake-ai-

pytorch.2021.

SYSTEM ANALYSIS 19

4, 2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

РУЛЬКО Е.В.

УСЛОЖНЕНИЕ ПОСРЕДСТВОМ ПОСТЕПЕННОГО ВОВЛЕЧЕНИЯ И ПРЕДОСТАВЛЕНИЯ
ВОЗНАГРАЖДЕНИЯ В ГЛУБОКОМ ОБУЧЕНИИ С ПОДКРЕПЛЕНИЕМ

Военная академия Республики Беларусь
г. Минск, Республика Беларусь

Тренировка нейронной сети, в рамках задач обучения с подкреплением, имеющей достаточную
вычислительную емкость для решения сложных задач достаточно проблематична. В реальной жизни
процесс решения задач требует системы знаний, где процесс изучения более сложных навыков основывается
на использовании уже имеющихся. Аналогично, в ходе биологической эволюции, новые формы жизни
базируются на достигнутом на предыдущем этапе уровне структурной сложности. Используя данные
идеи, в настоящей работе предложены способы увеличения сложности архитектуры нейронных сетей,
в частности способ тренировки сети с меньшем рецептивным полем и использованием натренированных
весов в качестве отправной точки для более сложных сетей через постепенное вовлечение некоторых
частей, а также способ предполагающий использование более простой сети с целью предоставления
вознаграждения для более сложной. Это позволяет получить лучшую производительность в конкретном
описанном примере, использующем Q-обучение, по сравнению со сценариями, когда сеть пытается
использовать больший вектор входной информации с нуля.

Ключевые слова: глубокое обучение с подкреплением, Q-обучение, обучение по куррикулумому, дистил-
ляционная модель, формирование вознаграждения в обучение с подкреплением

20 СИСТЕМНЫЙ АНАЛИЗ

Eugene Rulko, РhD, associate professor in computer science. The head of the research laboratory
of military operation simulation of the educa-tional institution «Military academy of the Republic
of Belarus». Research interests: deep learning, computer vision, reinforcement learning, reflexive
control.

Рулько Евгений Викторович, кандидат технических наук, доцент. Начальник научно-
исследовательской лаборатории моделирования военных действий учреждения
образования «Военная академия Республики Беларусь». Сфера научных интересов: глубокое
обучение, машинное зрение, обучение с подкреплением, рефлексивное управление.

E-mail: eugeni1533@gmail.com

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2024

