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Training a relatively big neural network within the framework of deep reinforcement learning that has enough 
capacity for complex tasks is challenging. In real life the process of task solving requires system of knowledge, where 
more complex skills are built upon previously learned ones. The same way biological evolution builds new forms 
of life based on a previously achieved level of complexity. Inspired by that, this work proposes ways of increasing 
complexity, especially a way of training neural networks with smaller receptive fields and using their weights as pri-
or knowledge for more complex successors through gradual involvement of some parts, and a way where a smaller 
network works as a source of reward for a more complicated one. That allows better performance in a particular case 
of deep Q-learning in comparison with a situation when the model tries to use a complex receptive field from scratch.
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Introduction

Reinforcement learning (RL) offers a powerful 
framework for decision-making tasks, where agents 
learn from interactions with an environment to improve 
their performance over time. The agent observes states 
and rewards from the environment and acts with a 
policy that maps states to actions. Deep Reinforcement 
Learning (DRL) denotes the combination of deep 
learning with RL. DRL uses deep neural networks 
to train powerful function approximators to address 
complicated domains [1]. But DRL still faces difficulties, 
especially when convergence of deep neural networks 
requires learning complicated concepts in environments 
with sparse feed-back. That difficulty has some intuitive 
explanation. Imagine a human baby behind a wheel with 
the target to drive home and the amount of attempts that 
it would take to achieve some positive feedback. Or the 
task of getting some chemical substance in a lab through 
the pu trial and error method by a person who is totally 
unfamiliar with chemistry. These processes require 
learning consecutive sets of skills, where each set is built 
upon previously learned ones. It’s especially attributable 
to humans and high-level animals. For a person it 
requires learning how to control bodily functions, 
getting basic knowledge from parents, kindergarten, and 
school and so on. A fox baby isn’t able to hunt, until 
acquiring all the necessary skills. In addition to learning 
procedure, defining a structure of a neural network of 
sufficient capacity, that can learn the set of consecutive 
tasks and effectively converge, also represents a hurdle. 
The process of evolu-tion in nature generally goes from 
simple neural structures to more complex. Inspired by 
that, this work describes an example Complex-ification 
Through Gradual Involvement And Reward Providing 
used for the game of Snake within the framework of deep 
Q-learning.

Related Work

Training a model on examples of increasing 
difficulty, progressively providing more challenging data 
or tasks as the policy improves, is called Curriculum 
Learning (CL) [2]. As the name suggests, the idea behind 
the approach borrows from human education, where 
complex tasks are taught by breaking them into simpler 
parts. This is used now in advanced spheres like teaching 
quadrupedal robots to perform complex movements [3], 
quantum architecture search [4] and many others. 
There are a lot of strategies of CL. An approach that 
uses separate policies for each skill [5] and a similar 
one that distils the specialist controllers into a single 
generalist transformer policy [6] both seem to be closest 
to the approach described in the current paper because of 
connection between successive teaching and allocating 
some network capacity for newly formed skills. 
Another related approach is called Progressive Neural 
Networks [7]. A progressive network is composed of 
multiple columns, and each column is a policy network 
for one specific task. It starts with one single column for 
training the first task, and then the number of columns 
increases with the number of new tasks. While training 
on a new task, neuron weights of the previous columns 
are frozen and representations from those frozen tasks 
are applied to the new column via a collateral connection 
to assist in learning of a new task [1]. Also the idea of 
Distillation Model involves training a smaller model first 
and then building a big one that will imitate the first one in 
order to kick start the large model’s learning progress [8]. 
In spite of some similarities, the suggested approach 
of Complexification Through Gradual Involvement 
unlike others uses successive allocation of the network 
capacity for a current single task through increasing 
the perception field, i. e. the state space. Reinforcement 
Learning from Human Feedback (RLHF) [9] learns from 
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human feedback instead of relying on an engineered 
reward function. Reward Providing unlike that uses a 
less complex network instead of a human expert as a 
source of reward for training a more complex one.

Complexification Through Gradual  
In-volvement And Experimental Studies

Complexification can be performed in different 
directions: just network capacity, the amount of sensory 
information (state vector) and subsequent network 
capacity, and the action vector. In the current work only 
the case of increasing the size of a state vector is con-
sidered. Suggested approach is described based on the 
game of Snake [10], which is a modified version of the 
original game [11]. The screen of the game is represented 
on Figure 1. Initially as an input vector the snake takes 
the following 11 parameters that are relative to its head’s 
position [10]: danger straight within 1 step, danger right 
within 1 step, danger left within 1 step, moving left, 
moving right, moving up, moving down, food left, food 
right, food up, food down.

Figure 1. The Snake game

The result of training is represented on Figure 2.

Figure 2. Training result for 11 values

It takes approximately 100 games to converge 
and the average result is about 35 scores. Also it requires 
epsilon-greedy strategy for exploration during the first 
80 epochs. Without it the network doesn’t converge at 
all. The analysis of the way the snake ends up shows 
that it tends to coil in itself – Figure 3. That situation is 

supposedly attributable to the inability of the snake to 
get understanding of the location of its own parts. Let’s 
increase the input vector by adding the following pa-
rameters:

- snake tail to the right of the head;
- snake tail to the left of the head;
- snake tail to the front of the head;
- relative distance to the right wall;
- relative distance to the left wall;
- relative distance to the front wall;
- last turn left;
- last turn right.

Figure 3. Coiling up

Now the input vector is comprised of 19 
parameters. The result of training is represented on 
Figure 4.

Figure 4. Training result for 19 values

Now it takes approximately 150 games to converge 
and the average result is about 62. If we want to start the 
learning process of a model with a bigger input vector 
not from scratch, but with weights of a smaller one, the 
procedure in this case is straightforward. For the current 
network architecture it requires copying of the weights of 
the second fully connected layer (FC 2) and the weights 
of the first fully connected layer (FC 1) concatenated 
with a tensor of random values of shape (8, 256) in 
order to fit the newly formed FC 1 layer. The scheme 
of the process is presented on Figure 5. The number 
of input and output features of each layer is specified  
in parenthesis.
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Figure 5. Weights loading

Modern frameworks like PyTorch provide a 
convenient way of loading weights from one model to 
another. The result of train-ing of the network with loaded 
weights from the experiment on Figure 2 is represented 
on Figure 6.

Figure 6. Training result after weights loading

It demonstrates that with prior knowledge it takes 
approximately 50 games to converge to even better scores 
in comparison with the experiment on Figure 4, which is 
about 3 times less in terms of count of games. Due to the 
nature of neural networks, they can rely only on known 
part of the input vector, performing rational activity in 
terms of the environment and simultaneously figuring 
out the way of applying newly added part of the input 
vector. It’s important to note that it doesn’t require any 
initial exploration as it were in both cases with a smaller 
and bigger vectors starting from scratch. But it seems 
that in more complicated scenarios a way of explor-ing 
possibilities that come with added input vector might be 
required. The next step is to add a convolutional (2d) head 
to the neural network that will partially observe the envi-
ronment. For this case a bit different approach will be 
demonstrated, which involves turning off some advanced 
parts of the neural network, like the convolutional head 
in this example, while training the initial smaller parts. In 
essence, this process is similar to training a smaller neural 
network and loading its weights into a correspondent part 
of a bigger one. In order to make it easier for the agent to 
learn, the convolutional head is provided not with the full 
environment, but with black and white cropped fragment 
of shape (8, 8) around snake’s head, rotated according to 

its current direction – Figure 7. There are several sequen-
tial stages of training. During a “Zeros” stage the output 
of the convolutional head is always a tensor of zeros and 
the head is frozen. In this case the agent is supposed to 
rely only on the 1d head. A “Noise” stage involves pro-
cessing the image by the frozen convolutional head with 
randomly initialized weights.

Figure 7. Input preprocessing

The absence of any structured useful information 
about the environment from 2d head supposedly 
will make the rest of the network insensitive to any 
information from that head. The initial intent of that is 
to prevent possible sporadic behavior of the network on 
the transition between the previous stage and involving 
the 2d head, when the network has been trained with the 
constant tensor of only zeros and it unexpectedly gets a 
tensor of random values. An “Involving” stage implies 
freezing the 1d head and unfreezing the 2d head in order 
to provide some prior knowledge and kick start the 
learning process of 2d head. A “Both heads” stage in-
volves simultaneous training of both 1d and 2d heads. 
Architecture of the neural network (without ReLUs) is 
presented on Figure 8.

A set of experiments has been conduct-ed in 
order to practically evaluate perfor-mance, depending 
on redistribution of the entire amount of 3000 games 
between different stages using fixed hyperparameters. 
Each experiment the agent uses epsilon-greedy strategy 
during first 280 games and then the greedy one. 

Figure 8. Network architecture
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The first experiment involves training the agent 
during all of the episodes (games) using a “Zeros” stage, 
which means it effectively uses only 1d head – Figure 9.

Figure 9. Training using only “Zeros” stage

Unsurprisingly, the result doesn’t seem much 
different from Figure 2. It has the average score of 33 
over 100 last games. The network just learns to ignore a 
tensor of zeros from the 2d head and rely only on 1d part 
that uses 11 values, the same as in case on Figure 2. It’s 
necessary to mention that in spite of pretty stable average 
score, the dispersion of scores for each game (blue color) 
is pretty high.

The second experiment involves train-ing the 
agent during all of the episodes using the “Both heads” 
stage, which means it uses both heads from the beginning. 
The result of training is presented on Figure 10.

Figure 10. Training using only “Both heads” stage

It has the average score of 36 over 100 last games. 
The result is not far from the pr\vious experiment, which 
means that the network isn’t able to utilize data from the 
2d head, “turns that head off”, and still relies only on 1d 
head as in the case with “Zeros” stage.

The third experiment involves training the agent 
on 500 games using “Zeros” stage and 2500 games using 
“Both heads” stage – Figure 11. In this case during the 

first stage the network learns how to utilize the 1d head 
and then, with its weights trained, involves the second 
one in the training process. The average score over 100 
last games is 54, which is better than in the previous 
cases. The important point here is that such a score can’t 
be achieved by training of two heads simultaneously.

Figure 11. Training using “Zeros” and “Both heads” stages

The forth experiment involves training the agent 
on 500 games using “Zeros” stage, 1000 games using 
“Involving” stage, and 1500 games using “Both heads” 
stage. The result of the experiment is demonstrated on 
Figure 12.

Figure 12. Training using “Zeros”, “Involving” and “Both 
heads” stages

The final average score is 54 and is the same 
as in the previous experiment, which means that using 
“Involving” stage doesn’t improve the results.

The fifth experiment involves training the agent 
on 500 games using “Zeros” stage, 500 games using 
“Noise” stage, 500 games using “Involving” stage, and 
1500 games using “Both heads” stage. The result of the 
experiment is demonstrated on Figure 13.
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Figure 13. Training using “Zeros” and “Both heads” stages

Here also the final average score of 52 doesn’t 
deviate too much from the third experiment, which 
means that using “Noise” stage also doesn’t improve the 
results.

Complexification Through Reward Providing 
And Experimental Studies

Transition from a simpler neural network to a 
more complicated one can also be conducted through 
reward shaping. In the first experiment the network is 
provided with the entire game screen rotated relatively 
to its head – Figure 14. With the established set of 
hyperparameters, using epsilon-greedy strategy for 
exploration during first 5000 games, the network doesn’t 
converge at all. At the same time, the experiment that 
has been described earlier, of using liner layer with the 
manually constructed 11 values demonstrates the result 
with an average score about 35 (Figure 2).

Figure 14. Full receptive field

The network in this case has the following 
architecture – Figure 15.

The suggested mechanism of Complexification 
Through Reward Providing involves usage of predicted 
value function from a smaller neural network, trained 
during the first stage in the same environment, as a part 
of reward for a more complicated one, and is presented 
on Figure 16.

Figure 15. Network architecture

Figure 16. Mechanism of complexification through reward 
providing

The result of training when the reward is the 
maximum value of a Q-function for a given state from a 
smaller network is presented on Figure 17.

Figure 17. Training only with the reward provided
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The result of training with an equal contribution 
of a real reward and the maximum of Q-function for a 
given state from the smaller network is the following – 

Figure 18 (upper image). The same experiment but 
with longer exploration phase is presented on Figure 18 
(lower image).

It has an average score about 50 which is better 
in comparison with the case with just using 11 values.  
It means that the result of a bigger network trained using 
some reward function provided by the smaller network 
is better than the result of the smaller network in that 
environment. In this particular case it’s connected with 
a richer state space that a bigger network can observe,  
but more importantly, the bigger network doesn’t 
converge at all from scratch without using such a 
gimmick. 

The result of training the network on the full 
receptive field from scratch without reward providing  
is presented on Figure 19. Figure 19. Training with equal contribution of rewards

Figure 18. Training with equal contribution of reward

Complexification Through Assistance Providing 
And Experimental Studies

In the previous case the bigger network acted 
in the environment but it was rewarded by a smaller 
one. It corresponds to a script: “You’ll act and I’ll tell 
you what’s good or bad”. For the purpose of research 
it seems reasonable to consider an alternative scenario 

which corresponds to: “You’ll be provided with some 
experiments by me, and the environment will tell you 
the outcome of certain actions”. During the second 
stage of training actual behavior is generated by a 
pretrained assistant model, and the agent is trained 
on the experience replay buffer, but instead of input 
vector of 11 parameters it uses the corresponded 2d 
representation – Figure 20.

Figure 20. Training with equal contribution of rewards
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The agent is switching between the aforemen-
tioned way of training and training on its own in order to 
assess its performance. The result of training in this case 
is worse than in the previous one – Figure 21.

Figure 21. Training with assistance providing

Conclusions And Future Work
This work is based on considering a pretty trivial 

example of the Snake game and describes the process of 
using weights of a previously trained network as prior 

knowledge for a more complicated one, as well the pro-
cess of reward providing. It was shown that the suggested 
approaches provide a way of achieving higher scores 
without any hyperparamenter search in comparison with 
the cases of training complexified networks from scratch. 
Future work requires conducting a more extensive set 
of experiments, including different environments and 
RL algorithms for getting conclusive information about 
applicability of the approaches. It’s necessary to consider 
different possible dimensions of increasing complexity, 
not only what’s directly connected with a receptive 
filed, i. e. a state vector. It seems that in this particular 
case of the Snake game we can use not a single current 
state of the game, but also several previous states and 
gradually add some recurrent part to the network. Future 
research can also be dedicated to finding automatically 
the necessary directions of extending network capacity, 
unlike it was done manually in the current work. In case 
of reward provider it also seems reasonable to shift the 
reward from a smaller network to the real one from the 
environment over time of training and further research 
can be dedicated to that, as well as to use a chain of 
successively trained networks where each previous one 
provides reward construction for the next one. Usage of 
a combination of the reward providing and assistance 
providing techniques may also be studied in the future.
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РУЛЬКО Е.В.

УСЛОЖНЕНИЕ ПОСРЕДСТВОМ ПОСТЕПЕННОГО ВОВЛЕЧЕНИЯ И ПРЕДОСТАВЛЕНИЯ 
ВОЗНАГРАЖДЕНИЯ В ГЛУБОКОМ ОБУЧЕНИИ С ПОДКРЕПЛЕНИЕМ

Военная академия Республики Беларусь
г. Минск, Республика Беларусь

Тренировка нейронной сети, в рамках задач обучения с подкреплением, имеющей достаточную 
вычислительную емкость для решения сложных задач достаточно проблематична. В реальной жизни  
процесс решения задач требует системы знаний, где процесс изучения более сложных навыков основывается 
на использовании уже имеющихся. Аналогично, в ходе биологической эволюции, новые формы жизни 
базируются на достигнутом на предыдущем этапе уровне структурной сложности. Используя данные 
идеи, в настоящей работе предложены способы увеличения сложности архитектуры нейронных сетей,  
в частности способ тренировки сети с меньшем рецептивным полем и использованием натренированных 
весов в качестве отправной точки для более сложных сетей через постепенное вовлечение некоторых  
частей, а также способ предполагающий использование более простой сети с целью предоставления 
вознаграждения для более сложной. Это позволяет получить лучшую производительность в конкретном 
описанном примере, использующем Q-обучение, по сравнению со сценариями, когда сеть пытается 
использовать больший вектор входной информации с нуля.

Ключевые слова: глубокое обучение с подкреплением, Q-обучение, обучение по куррикулумому, дистил-
ляционная модель, формирование вознаграждения в обучение с подкреплением
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