содержанием в ней нерастворимых соединений железа без предварительной очистки сбрасывается в существующий водный объект. В связи с этим были рекомендованы методы утилизации образующегося осадка на основе новейших разработок отечественных и зарубежных ученых. Применение предложенных способов вторичного использования отходов позволит предотвратить загрязнение и заиление водоемов, уменьшить объем осадка, вывозимого на полигоны ТБО, а также использовать образующийся шлам в качестве наполнителей различных строительных материалов.

Литература

1. Об утверждении гигиенических нормативов: утв. постановлением Совета Министров Республики Беларусь 25 января 2021 г. № 37. — Мн. — 1255 с.

УДК 628.196

Насыщенный раствор озона – перспективный аналог хлорсодержащим дезинфицирующим средствам

Каравацкая К.С., Марушевский В.О. Научный руководитель Комаров М.А. Белорусский национальный технический университет Минск, Республика Беларусь

Насыщенный раствор озона – это не просто альтернатива хлору, это комплексное решение для дезинфекции и очистки. Помимо уже известных преимуществ, таких как меньшая коррозия и повышенная экологичность, озоновая обработка воды демонстрирует исключительную широкого спектра эффективность в разрушении органических загрязнителей. Возможность комбинирования озоновой обработки с другими технологиями делает ее идеальным инструментом для достижения максимальной эффективности очистки и решения самых сложных задач в различных областях: от обработки питьевой воды до дезинфекции в медицинских учреждениях.

В Республике Беларусь водоснабжение промышленных предприятий и населенных пунктов в большинстве случаев осуществляется из пресных подземных источников. С течением времени скважины для забора подземных вод и водопроводные сети подвергаются микробному загрязнению, что может привести к вспышкам инфекций, передающихся водой по городским системам водоснабжения [1]. Причиной увеличение

микробного загрязнения питьевой воды могут быть изношенные инженерные сооружения, неправильная эксплуатация водоснабжения, неэффективные методы обработки воды и поверхности водопроводных сооружений. Для предотвращения микробного загрязнения существуют различные механизмы: модернизация или полная замена устаревших систем водоснабжения, а также осуществление дезинфекции водозаборных скважин сооружений питьевого водоснабжения. И Дезинфекция воды применяется для устранения из нее болезнетворных и иных микроорганизмов и вирусов, из-за наличия которых вода становится непригодной для питья, хозяйственных нужд или промышленных целей. При этом дезинфекция инженерных сетей и сооружений является одним из видов обеззараживания и представляет собой комплекс мероприятий, направленных на уничтожение возбудителей инфекционных заболеваний и разрушение токсинов на объектах внешней среды.

В технологии водоподготовки известно много методов дезинфекции воды: термические; реагентные; физические и олигодинамия. Самым широко распространенным методом является реагентый, при котором обработка производится сильными окислителями: хлором, диоксидом хлора, гипохлоритом натрия и озоном [2; 3].

При процессе хлорирования бактерии, находящиеся в воде, погибают в результате окисления веществ, входящих в состав протоплазмы клеток. Однако данный процесс имеет ряд существенных недостатков [4; 5; 6]:

- невысокая эффективность;
- образование высокотоксичных хлорорганических соединений;
- высокий расход активного хлора;
- высокая токсичность дезинфектантов на основе хлора;
- высокая коррозионная активность раствора по отношению к материалам из которых изготовлены сети и запорная арматура, что приводит к быстрому их износу [7; 8];
- длительный процесс дезинфекции для достижения необходимого эффекта (требуется минимум 24 часа для обработки внутренней поверхности трубопроводов);
- необходимо предусматривать процесс дехлорирования образовавшихся растворов, для безопасного их сброса в канализацию;
- методы хлорирования не связаны с научно-рациональным основополагающим принципом дезинфекции.

Альтернативным вариантом дезинфекции трубопроводов является насыщенный раствор озона. Основные преимущества озона перед хлором в качестве дезинфицирующего средства [6]:

– Широкий спектр действия: Озон не просто дезинфицирует, он эффективно разрушает широкий спектр органических загрязнителей. Его

механизм действия заключается в атаке ароматических и азо-структур, содержащих ненасыщенные связи, которые легко разрушаются под воздействием озона. В результате образуются менее токсичные продукты, что делает его использование более безопасным.

- Подтвержденная эффективность: Эксперименты с модельными растворами метиленового синего подтверждают высокую эффективность озона. При концентрации всего 15 мг/л озон удаляет 85-90% красителя за 45 минут.
- Синергетический эффект: Одним из ключевых преимуществ озона является его способность эффективно взаимодействовать с другими технологиями для достижения еще более высокой степени очистки. Например, ультразвуковая кавитация, создавая микроскопические пузырьки, улучшает взаимодействие с озоном, увеличивая его растворимость в воде и усиливая процесс окисления загрязняющих вешеств.
- Озоновая флотация + ультразвук = максимальная эффективность: Сочетание озоновой флотации с ультразвуковой обработкой демонстрирует впечатляющие результаты, значительно превосходящие традиционные методы. В то время как обычная озонация обеспечивает 70% эффективности удаления красителей, то комбинированный метод достигает эффективности в 95%. Другим важным показателем является экономия времени и ресурсов: комбинированный метод не только эффективен, но и экономичен. Сокращая время очистки с 90 до 45 минут, он становится более практичным для реальных условий, где скорость и степень очистки критически важны [4; 5].

Основные стадии процесса озонирования:

- 1. Генерация озона B озонаторе кислород (O_2) под воздействием электрического разряда или ультрафиолетового излучения преобразуется в озон (O_3) .
- 2. Ввод озона в воду. Сгенерированный озон подается в воду, где он растворяется. Существуют различные способы ввода озона: барботирование (пропускание озона через воду в виде пузырьков); инжектирование (впрыск озона под давлением); контактный метод (пропускание воды через озонирующую камеру).
- 3. Окисление и дезинфекция. На данном этапе происходит взаимодействие насыщенного раствора озона с различными загрязнителями:
- дезинфекция: эффективное уничтожение бактерий, вирусов, грибков и других микроорганизмов за счет происходящего процесса окисления их клеточных структур;

- удаление железа и марганца: озон окисляет растворенное двухвалентное железо (Fe²+) и марганец (Mn²+) до нерастворимых трехвалентных соединений (Fe³+ и Mn³+), которые затем удаляются из воды фильтрацией;
- удаление органических веществ: озон окисляет многие органические соединения, такие как пестициды, фенолы и другие загрязняющие вещества, снижая их концентрацию в воде;
- удаление запахов и привкусов: озон эффективно устраняет неприятные запахи и привкусы воды, обусловленные присутствием органических соединений;
- осветление воды: озон способствует коагуляции коллоидных частиц, что приводит к осветлению воды.
- 4. Разложение озона. После выполнения своей функции озон разлагается на кислород (O_2) , что делает этот метод экологически чистым, и происходит согласно уравнениям Хорвата [9]:

$$O_3 + H_2O \to HO_3^+ + OH^-,$$
 (1)

$$HO_3^+ + OH^- \leftrightarrow 2HO_2$$
, (2)

$$O_3 + HO_2 \rightarrow HO + 2O_2, \tag{3}$$

$$HO + HO_2 \rightarrow H_2O + O_2. \tag{4}$$

Озонирование воды является эффективным и экологически чистым методом очистки и дезинфекции. Данный метод имеет широкие перспективы применения в различных областях, включая водоснабжение, пищевую промышленность, медицину и др. Это подтверждается исследований, результатами проведенных описанных исследовательской литературе [5]. Озон превосходит такие дезинфектанты, как хлор, хлорамин и двуокись хлора. По бактерицидным свойствам озон более чем в 3 раза эффективнее УФ-излучения и более чем в 400 раз эффективнее дезинфектантов на основе хлора. Эффективность процесса озонирования повышается за счет его сочетания с ультрозвуковой обработкой. Дополнительным преимуществами за счет такого сочетания использования являются:

- 1. Отсутствие вредных побочных продуктов: в отличие от методов, использующих хлор или другие химические реагенты, продукты реакции озона (вода и кислород) безопасны.
- 2. Компактность установки: комбинированные системы могут быть встроены в существующие линии очистки без значительных изменений.

3. Устранение стойких загрязнителей: таких веществ, как фенолы, нефтепродукты и красители, эффективно разрушаются комбинацией озона и ультразвука.

На основании проведенного анализа различных литературных источников проведена оценка эффективности использования различных дезинфектантов, которая представлена в таблице [5; 6; 9; 10].

Сравнительный анализ различных дезинфектантов

Таблица

Технология	Простейшие	Бактерии	Вирусы
Хлорирование	Не уничтожает	Уничтожает	Уничтожает
		полностью	полностью
Озонирование	Уничтожает	Уничтожает	Уничтожает
	полностью	полностью	полностью

Однако, не смотря на все преимущества применения озона в процессе дезинфекции на сегодняшний день чаще для данного процесса используется метод хлорирование. Это связано исторически с устоявшимися причинами: простота метода хлорирования и сложность процесса озонирования, который требует высококвалифицированный обслуживающий персонал, сложное оборудование с низким уровнем автоматизации. Однако современные озонаторы лишены практически всех этих и других недостатков [6].

Литература

- 1. Романовский, В.И. Анализ загрязнений источников питьевого водоснабжения в Республике Беларусь / В.И. Романовский // Вестник БрГТУ. Водохозяйственное строительство, теплоэнергетика и геоэкология. 2014. №2. С. 65–67.
- 2. ТКП 45-4.01-181-2009. Сооружения водоподготовки. Обеззараживание воды. Правила проектирования. Введ. 2010-29.12. Минск : Госстандарт, 2010. 32 с.
- 3. Анализ технических аспектов дезинфекции поверхностей водными растворами озона и гипохлорита натрия / А.В. Поспелов [и др.] // Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки. $-2024.- N \cdot 2.- C.~87-95.$
- 4. Сравнительный анализ эффективности дезинфекции поверхностей в водных растворах озона и гипохлорита натрия / А.В. Поспелов [и др.] // Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки. 2024. Т. 36. №. 1. С. 94–99.

- 5. Comparative Analysis of the Disinfection Efficiency of Steel and Polymer Surfaces with Aqueous Solutions of Ozone and Sodium Hypochlorite / V. Romanovski [et al.] // Water. -2024. Vol. 16. №. 5. P. 793.
- 6. Романовский, В.И. Дезинфекция озоном водозаборных скважин и трубопроводов систем питьевого водоснабжения / В.И. Романовский, А.Д. Гуринович, П. Вавженюк // Труды БГТУ.№ 3. Химия и технология неорганических веществ. -2013. № 3. C. 55-60.
- 6. Коррозия углеродистых сталей в дезинфицирующих растворах / А.В. Поспелов [и др.] // Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки. 2022. №. 14. С. 89-93.
- 7. Коррозия нержавеющих сталей в дезинфицирующих растворах / А.В. Поспелов [и др.] // Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки. 2023. №. 1 (33). С. 90-93.
- 8. Horvath, M. Ozone / M. Horvath, L. Bilitzky, J. Huttner. Budapest : Elsevier, $1985.-350\ p.$
- 9. Оценка воздействия на окружающую среду дезинфицирующих веществ / М.А. Комаров [и др.] // Вестник Полоцкого государственного университета. Серия F. Строительство. Прикладные науки. $-2024.-T.36.-N_{\odot}.1.-C.87-93.$

УДК 621.65

Сравнительная характеристика современных насосов, применяемых в волоснабжении и волоотведении

Каравацкая К. С., Марушевский В.О. Научный руководитель Майорчик А. П., к.т.н., доцент Белорусский национальный технический университет Минск, Республика Беларусь

На основании проведенных исследований проведена сравнительная характеристика современных насосов, используемых в системах водоснабжения и водоотведения, были обозначены преимущества и недостатки каждого, а также сделан вывод на основе всех данных.

Насосы играют ключевую роль в системах водоснабжения и водоотведения, обеспечивая необходимую подачу воды и напор. С учетом различных условий эксплуатации и задач, существует множество типов насосов, каждый из которых имеет свои особенности и преимущества.