НОВЫЕ МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ АРМИРОВАНИЯ СЛОЁВ ДОРОЖНОЙ ОДЕЖДЫ

Заварзин Иван Вадимович, студент 3-го курса кафедры «Мосты и тоннели»
Белорусский национальный технический университет, город Минск (Научный руководитель — Мытько Л.Р., канд. техн. наук, профессор)

Дорожная одежда — основной конструктивный элемент автомобильной дороги, который воспринимает нагрузку от транспортных средств и передаёт её на земляное полотно.

Дорожная одежда является технологически сложным и дорогим сооружением: она состоит из нескольких слоёв, каждый из которых выполняет свою функцию и их устройство производится по определённой технологии.

Практика показывает, что применяемые строительные материалы не вполне отвечают предъявляемым прочностным требованиям. В особенности это актуально для верхних слоёв покрытия дорожной одежды, которые достаточно быстро приходят в негодность: покрываются трещинами, деформируются под воздействием сезонных перепадов температур, на них образуются колеи и волны. Возникает вопрос: как улучшить прочностные характеристики слоев покрытия, не прибегая к замене материала и серьёзному изменению технологии их устройства?

Одним из таких способов является армирование слоев дорожной одежды. Под армированием понимается изменение структуры строительного материала путём введения в его состав каркасообразующих добавок, которые принимают на себя часть нагрузок и улучшают тем самым прочностные свойства исходного материала.

Существует две принципиально разные технологии армирования:

- Сетчатое армирование является наиболее распространённым типом армирования слоев дорожной одежды. Данный способ армирования подразумевает введение между слоев дорожной одежды сетки различной конструкции или нетканого материала.
- Дисперсное (объёмное) армирование. В отличии от предыдущего способа в смесь добавляют отдельные армирующие волокона с их последующим распределением по всему объёму смеси. Таким образом, после застывания смеси внутри неё образуется своеобразный каркас из

волокон, перераспределяющий нагрузки и увеличивающий прочность конструкции.

Каждый из способов армирования оказывает особое влияние на свойства исходного материала. Сопоставив их с требованиями, предъявляемыми к слоям дорожной одежды, можно определить, какой из типов армирования подойдёт для каждого отдельного слоя.

Введение армирующих волокон в мелкозернистый асфальтобетон позволит:

- повысить прочность асфальтобетона на растяжение и сжатие;
- снизить трещинообразование и замедлить процесс роста трещин;
- повысить водонепроницаемость;
- снизить колееобразование;
- повысить долговечность покрытия.

В качества подтверждения всего вышесказанного приведём результаты испытаний, в ходе которых производилось сравнение основных эксплуатационных и прочностных характеристик обычного асфальтобетона с асфальтобетоном, армированным базальтовым супертонким волокном (БСТВ). Объём добавки составил 0,5% от общего объёма смеси (Табл. 1).

Таблица 1 – Эксплуатационные и прочностные характеристики образцов

Характеристики:		Образец №1 (Асфальтобетон типа Б)	Образец №2 (Асфальтобетон типа Б с добавлением БСТВ)	Абсолютный и относительный прирост:
Водонасыщение (% от объёма)		1,75	1,52	-0,23 (-13%)
Предел	при 0 °С	9,04	9,15	0,11 (1,2%)
прочности при	при 20 °C	3,34	4,19	0,85 (25,4%)
сжатии (МПа)	при 50 °C	1,30	1,55	0,25 (19,2%)
Водостойкость при длительном водонасыщении		0,90	0,92	0,2 (2,2%)
Трещиностойкость при 0°C		4,03	4,70	0,67 (16,6%)
Сцепление при сдвиге (МПа)		0,29	0,34	0,05 (17,2%)

Как результатов испытаний, армированный образец видно ИЗ асфальтобетона действительно превосходит неармированный по многим немаловажным показателям. Отдельно хочется выделить существенно возросшую трещиностойкость и прочность при сжатии (особенно при высоких температурах).

Для слоёв основания дорожной одежды особое значение имеют прочностные характеристики и, в особенности, стойкость к деформациям, ибо

нарушение целостности данных слоёв неминуемо приводит к разрушению уже верхних покрывающих слоёв и, как результат, к разрушению всего дорожного полотна. При этом, необходимо также сохранить достаточно высокую пористость этих слоёв, что не позволяет прибегнуть к применению вяжущих для упрочнения конструкции. Здесь и приходят на помощь армирующие сетки.

Установка армирующих сеток между слоями основания позволит:

- увеличить общую прочность конструкции;
- уменьшить деформации по всей глубине дорожной одежды;
- снизить трещинообразование в слоях покрытия дорожной одежды.

При этом, армирующие сетки не будут препятствовать движению влаги в водоотводящем слое основания.

В подтверждение приведём результаты испытаний плоских металлопластиковых георешёток, использованных в качестве армирующей прослойки между слоем мелкого уплотнённого песка и щебня фракции 40-70 мм (Табл. 2).

Таблица 2 – Результаты испытаний армирующих сеток

Марка армирующей сетки	Размер ячейки (мм)	Упругий прогиб (мм)	Модуль упругости на поверхности (МПа)
Армирование отсутствует	_	1,460	86
РД-30	50	0,947	133
РД-30	75	0,860	146
РД-60	50	1,212	104
РД-60	75	0,998	126
РД-90	50	0,925	136
РД-90	75	0,917	137

По приведённым данным видно, что применение армирующих сеток может снизить прогиб дорожного полотна под воздействием нагрузок на 41% (для сетки РД-30 с размером ячейки 75 мм) и повысить модуль упругости почти на 70%, что, безусловно, благоприятно скажется на прочности как самих слоёв основания, так и всего дорожного полотна в целом. Уменьшение деформаций также положительно скажется на трещиностойкости верхних слоёв покрытия.

Таким образом, можно сказать, что применение дисперсного армирования и использование армирующих сеток положительно сказалось на характеристиках дорожной одежды. При этом, их применение не требует серьёзного изменения технологического процесса и является достаточно экономичным, что делает данные методы не только эффективными, но и экономически целесообразными.

Литература:

- 1. Эксперементально-теоретические исследования армированного основания дорожной одежды / С.А. Матвеев [и др.] // Вестник СибАДИ. 2015. №4. С. 80-86.
- 2. Снижение интенсивности развития пластических деформаций с помощью дисперсного армирования дорожно-строительных материалов добавками минерального волокна / Д.А. Строев [и др.] // Вестник ТГАСУ. 2011. №1. С. 192-199.