Е.Г. Сапожников, Анорну Квами Джофрей (БНТУ)

РАСЧЕТ ПАРАМЕТРОВ И ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО МЕСТОРАСПОЛОЖЕНИЯ ДРЕНАЖНОЙ СКВАЖИНЫ ДЛЯ ПЕРЕХВАТА ЗАГРЯЗНЯЮЩИХ СТОКОВ, ПРОФИЛЬТРОВАВШИХСЯ ИЗ ХРАНИЛИЩА (ТЕХНИКО-ЭКОНОМИЧЕСКИЙ РАСЧЕТ)

В комплекс действующих и строящихся промышленных предприятий почти всегда входят искусственные водоемы, из которых происходит фильтрация в подземные воды. К таким водоемам относятся хранилища промышленных стоков, накопители, пруды и бассейны, и т. д. Размеры этих сооружений нередко бывают весьма значительными (до нескольких десятков и даже сотен гектаров) и в них постоянно или периодически поступает большое количество использованных в технологическом процессе так называемых "отработанных" или "сточных" вод. Эти воды, как правило, являются непригодными для хозяйственно-питьевых нужд из-за повышленной общей минерализации или содержания в них вредных химических веществ.

Таким образом, указанные промышленные водоемы представляют собой потенциальные очаги загрязнения подземных вод.

Задача прогноза возможной фильтрации и динамики распространения сточных вод в водоносных пластах и разработка мероприятий по защите подземных вод от загрязнения представляется в настоящее время одной из важнейших в гидрогеологии, поскольку количество промышленных бассейнов и хранилищ постоянно возрастает, а подземные воды получают все более широкое использование как источник хозяйственно-питьевого водоснабжения.

Решение поставленной задачи при условии, что эффективная мощность пласта постоянна, сводится к интегрированию дифференциального уравнения (рисунок 1) [1, 2, 5]

$$\frac{T\partial}{r\partial r} \left(r \frac{\partial S}{\partial r} \right) = q \tag{1}$$

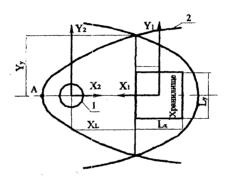


Рисунок 1 — Схема для оценки области захвата дренажной скважиной 1 - дренажная скважина; 2 - раздельная (нейтральная) линия тока; 3 - депрессионная воронка в потоке; A - водораздельная точка; $Q_{\text{скв}}$ - дебит скважины; q - интенсивность фильтрации из хранилища; S_{c}, S_{r} - понижение напоров в скважине и на расстоянии r м от нее

при следующих условиях,

$$\begin{cases} S|_{r=L} = 0\\ 2\pi r T \frac{S}{r}|_{r\to 0} = -Q_{c\kappa \theta} \ge q L_x L_y \end{cases}, \tag{2}$$

где r — расстояние от скважины до места (точки) определения понижения напора, м; T — водопроводимость, T = M·Kф, m^2 /сут; S — пони-

жение напора в области влияния скважины, м; М- мощность пласта, м; q – интенсивность фильтрации через экран, $m^3/\text{сут/m}^2$;

$$Q_{\text{скв}}$$
 — дебит дренажной скважины, м³/сут; $L \ge \left| \frac{L_{x}}{L_{y}} \right|$ — эффективные

поперечные размеры хранилища.

После интегрирования уравнения (1) и постановки условия (2), получим понижение напоров в любой точке зон влияния скважины

$$S_r = \frac{q(r^2 - L^2)}{4T} + \left(\frac{Q_{CKB}}{2\pi T} + \frac{qr_{CKB}^2}{2T}\right) \cdot \ln\frac{L}{r}.$$
 (3)

Так как $r_{\text{скв}} \ll L$, то значение S_r можно представить в следующем ииле:

$$S_r = \frac{Q_{CKB}}{2\pi T} \ln \frac{L}{r} - \frac{qL^2}{4T}.$$
 (4)

Понижение напора на фильтре скважины находим по формуле

$$S_{CKB}|_{r=r_{CKB}} = \frac{Q_{CKB}}{2\pi T} \left(\ln \frac{L}{r_{CKB}} + \varsigma \right) - \frac{qL^2}{4T}, \tag{5}$$

где $r_{\text{скв}}$ – радиус скважины, м; ζ – дополнительное сопротивление, учитывающее фильтрационное несовершенство скважины.

Область захвата дренажной скважины определяется такой областью общего фильтрационного потока, в которой линии тока направлены непосредственно к эксплуатационной скважине. В гидродинамическом отношении она четко ограничивается так называемой пейтральной линией. Фильтрационный поток между нейтральной линией и скважиной будет непосредственно направлен к дренажной скважине, а за пределами нейтральной линии поток как бы проскакивает, минуя скважину.

Аналитическое построение линий тока может производиться с использованием известных уравнений Коши-Римана [2, 4],

$$\frac{\partial y}{\partial x} = \frac{\partial \overline{\psi}}{\partial y}, \quad \frac{\partial H}{\partial y} = -\frac{\partial \overline{\psi}}{\partial y}, \quad \overline{\psi} = \psi/T,$$
 (6)

где ψ - приведенная функция тока, которая на каждой линии тока имеет постоянное значение.

Интегрируя первое из уравнений Коши-Римана (6), получим выражение для приведенной функции тока,

$$\overline{\psi} = \int \frac{dH}{dx} dy + C = Iy + \frac{Q_{CKB}}{2\pi T} arctg \frac{y}{x} + C.$$
 (7)

Считая режим квазистационарным, получаем:

$$\frac{dH}{dy} = I + \frac{Q_{CKB}}{2\pi T} \frac{x}{\left(x^2 + y^2\right)}.$$
 (8)

Задавая нулевое значение ψ на линии тока, совпадающей с положительной осью X, где y=0 и $\operatorname{arctg}(y/x)=0$, получим произвольную постоянную C=0.

Поскольку между нейтральной линией и положительной осью X (линией $\psi=0$), вследствие симметрии потока проходит расход $0.5Q_{\rm ckn}$ то на нейтральной линии $\psi=Q/2T$.

Подставляя значение ψ в (7), получим уравнение нейтральной линии тока:

$$\frac{Q_{c\kappa\theta}}{2T} = Iy + \frac{Q_{c\kappa\theta}}{2\pi T} \arctan \frac{y}{x},\tag{9}$$

где T – водопроводимость пласта основания хранилища, м 2 /сут; I – сетественный уклон потока; x, y - координаты по оси X и Y соответственно.

Обозначим расстояние от скважины до хранилища как X_L , и соответствующие координаты по оси Y как Y_L , где $2Y_L$ - ширина фронта загрязнения на расстоянии X_L от скважины (рисунок 1).

Ширина фронта загрязненной жидкости на расстоянии X_L от пренажной скважины определяется параметрами и условиями распекания инфильтрационных вод из хранилища, т. е. при инфильтрационном расходе Q_6 определяется половина ширины фронта загрязнения Y_L по уравнению раздельной линии, формировавшейся хранилищем.

Наконец, для того чтобы раздельная линия тока дренажной скважины дебитом $Q_{\text{скв}}$ проходила через точку с координатами (X_L , V_L), она должна быть расположена на расстоянии X_L от хранилища, которое определяется по зависимости (10), полученной в результате решения (9) относительно X_L , т. е.

$$x = \frac{L_{\text{max}}}{\text{tg}\pi \left(1 - \frac{2TIL_{\text{max}}}{Q_{c\kappa\epsilon}}\right)},\tag{10}$$

при этом $2TIL_{\max} < Q_{c\kappa e} \le 4TIL_{\max}$

$$L_{\max} \ge \max \begin{vmatrix} 2Y_L \\ L_y \end{vmatrix} . \tag{11}$$

Используя полученные выше зависимости, можно получить опнимальные расстояния от хранилища до дренажной скважины, например по минимуму приведенных затрат [3].

$$\Pi = \Pi_0 + \Pi_s S_{cp} + \Pi_c + \Pi_B L_B + \mathcal{F}_0.$$
 (12)

При этом основным требованием является недопущение загрязисния подземных вод профильтровавшимися стоками. Для конкретного объекта (хранилища промышленные стоков) определяются оптимальные расход дренажной скважины и ее расстояние до хранилища (рисунок 1).

Пример расчета. Инфильтрационные утечки из хранилища промышленных отходов размером $50x50 \text{ м}^2$ (рисунок 1) составляют 150 м^3 /сут. Требуется запроектировать дренажную скважину диаметром 150 мм, чтобы предотвратить загрязнение подземных вод в результате утечек стоков. Водоносный пласт характеризуется следующими показателями: коэффициент фильтрации грунта основания K = 12 м/сут; мощность пласта M = 25 м, уклон естественного потока I = 0,001. В основании водоносного горизонта залегают глины, служащие водоупором. Сверху пласт перекрыт песчаносуглинистым слоем 4,5 м. Статический уровень располагается на отметке Hc = 5,5 м от поверхности земли. Разность отметок воды в хранилище и статического уровня подземных вод в дренажной скважине составляет 6,5 м.

Стоимость сооружения и оборудования одной скважины K=20 млн. руб; стоимость электроэнергии $\sigma \cong 0,871$ тыс. руб/кВтч; $K\Pi Д$ водоподъемного оборудования $\eta \cong 0,6$.

Оптимальное решение этой задачи сводится определению минимума приведенных затрат Π_{\min} при расположении дренажной скважины на различных расстояниях от хранилища с обязательным условием полного забора всех профильтровавшихся стоков.

Расчеты ведем в следующей последовательности:

Шаг 1 - определяем методом подбора по зависимости (10) ширину шлейфа $L_{\text{загря}^3}$. (на расстоянии $L_x/2$ от центра хранилища), формирующегося в результате утечек промышленных стоков (рисунок 2):

$$\frac{150}{2 \cdot 2 \cdot 25} = 0.001 y_L + \frac{150}{2 \cdot 3.14 \cdot 225} arctg \frac{y_L}{25}.$$

Отсюда $Y_L\cong 181,5$ м и следовательно $L_{\text{загряз.}}=2$ $Y_L\cong 363,0$ м.

В соответствии с зависимостью (11) L_{max} принимаем равным 363,0 м, так как $2V_L = 363.0$ м $>L_x = 50.0$ м.

Шаг 2 - определяем максимальный и минимальный дебиты скважины, причем $X_L \to$ при $Q_{\text{скв}} \to Q_{\text{min}} = 2TIL_{\text{max}} = 2 \cdot 12 \cdot 25 \cdot 0,001 \cdot 363 = 217,$ м³/сут, а $X_L \to \infty$ при $Q_{\text{скв}} \to Q_{\text{min}} = 2TIL_{\text{max}} = 4 \cdot 12 \cdot 25 \cdot 0.001 \cdot 363 = 435,$ м³/сут. По заданным расходам определяем понижение $S_{\text{скв}}$ воды

скважине по формуле (5), а ее месторасположение X_L по отношению к хранилищу по формуле (10). Результаты расчета величин $S_{\text{скв}}$ и X_L приведены в таблице 1.

Шаг 3 — по формуле (12) рассчитываются приведенные затраты, связанные с сооружением и эксплуатацией рассматриваемого варишнта дренажной скважины (таблица 1).

Шаг 4 — строится график приведенных затрат в зависимости от удаления дренажной скважины до хранилища промышленных стоков (рисунок 2). По графику определяется оптимальное расстояние $x_{L_{onm}}$ между скважиной и хранилищем. В нашем примере $x_{L_{onm}} = 115\,\mathrm{m}$.



Рисунок 2 — График для выбора оптимального расстояния дренажной скважины относительно хранилища промышленных стоков

Таблица 1 — Определение оптимального месторасположения скважины для перехвата загрязняющих стоков профильтровавшихся из хранилища стоков (технико-экономический расчет)

Дебит	Расстояние	Расстояние Понижение Приведенные затраты					
скважи-	от храни-	воды в	для подъема	для подъема	на	на	приведенных
ны,	лица до	скважине,	воды на геомет-	воды на понижение	сооружение и	транспортировку	затрат,
Q _{скв}	скважины,	S _{ckb} m ²	рическую высоту	уровня воды в сква-	эксплуатацию	воды в водоподъ-	П тыс. руб.
м ³ /сут	X_L , mm	M ²	П _о тыс. руб	жине,	водовода,	емных трубах,	
	ļ .			$\Pi_{\rm B} {\rm S}_{\rm ckB}$ тыс. руб.	$\Pi_{\scriptscriptstyle B}$ $L_{\scriptscriptstyle B}$ тыс.	Θ_{o} L_{n} тыс. руб.	
		1.		•	руб.		
435,6	0	2,01	4110,25	1271,02	36,49	4,86	5417,71
415,6	27,49	1,91	3921,53	1152,33	234,36	4,17.	5308,22
395,6	58,14	1,81	3732,82	1039,45	450,52	3,55	5222,79
375,6	93,05	1,70	3544,10	926,92	692,75	3,00	5163,77
355,6	133,90	1,61	3355,38	831,10	972,63	2,51	5159,11
335,6	183,50	1,51	3166,67	735,64	1309,36	2,08	5211,79
315,6	246,88	1,42	2977,95	650,57	1737,05	1,71	5365,57
295,6	334,09	1,32	2789,23	566,43	2323,59	1,38	5679,35
275,6	468,81	1,22	2600,52	488,10	3228,57	1,10	6317,19

ЛИТЕРАТУРА

- 1. Абрамов, С.К., Алексеев, И.С. Забор воды из подземного источника. М.: Колос, 1980. 340 с.
- 2. Полубаринова-Кочина, П.Я. Теория движения грунтовых под. Изд. 2-е, главная редакция физико-математической литературы. М.: Наука, 1977.-664 с.
- 3. Пособие по проектированию сооружений для забора подчемных вод (к СНиП 2.04.02-84) / ВНИИ ВОДГЕО Госстроя СССР. М.: Стройиздат, 1989. 272 с.
- 4. Шестаков, В.М. Динамика подземных вод. 2-е изд. М.: Изд-во МГУ, 1979. 367 с.
- 5. Ground water pollution and conservation "Environmental. Sc. and Technology." 1972, 6, № 2, 213 225.

УДК 627.8.065

М.Е. Минчукова, Г.Г. Круглов (БНТУ)

ПОЛИМЕРНЫЕ ГИДРОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ: СВОЙСТВА И ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ В СТРОИТЕЛЬСТВЕ

Обеспечение экологической безопасности гидротехнических сооружений различных систем является основным условием при их эксплуатации.

В комплекс гидротехнических, водоохранных и очистных объекнов, как правило, входят защитные дамбы, отстойники и накопители, промышленные бассейны, которые должны быть оборудованы противофильтрационными экранами, препятствующими проникношению воды и вредных веществ в нижележащие горизонты.

Устройство экранов из геосинтетических материалов нового поколения является наиболее современным техническим решением идроизоляции сооружений. Практическая водонепроницаемость и инсокая стойкость пленок полимерных материалов к воздействию прессивных жидкостей позволяют обеспечить высокую надежность сооружений [1].