ПРОДУКТ ПЕРЕРАБОТКИ КРОВЕЛЬНЫХ МАТЕРИАЛОВ КАК КОМПОНЕНТ РЕМОНТНЫХ СМЕСЕЙ

PRODUCT OF ROOFING MATERIALS RECYCLING AS A COMPONENT OF MIXTURES FOR REPAIR

- В. Г. Соловьев, старший научный сотрудник республиканского дочернего унитарного предприятия «Белорусский дорожный научно-исследовательский институт «БелдорНИИ», г. Минск, Беларусь
- С. Е. Кравченко, кандидат технических наук, заведующий кафедрой «Строительство и эксплуатация дорог» Белорусского национального технического университета, г. Минск, Беларусь
- **Н. В. Радьков**, начальник управления республиканского дочернего унитарного предприятия «Белорусский дорожный научно-исследовательский институт «БелдорНИИ», г. Минск, Беларусь
- **М. Г. Жуковин,** начальник лаборатории республиканского дочернего унитарного предприятия «Белорусский дорожный научно-исследовательский институт «БелдорНИИ», г. Минск, Беларусь

В статье рассмотрена возможность и целесообразность введения вторичного органоминерального порошка, полученного при переработке кровельных материалов, в состав ремонтных складируемых органо-минеральных смесей (СОМС). Приведены результаты лабораторных испытаний разработанных ремонтных составов.

The article describes possibility and suitability of introduction of organic-mineral secondary powder obtained during recycling of roofing materials into storage organomineral mixtures for repair (SOMM). Results of the laboratory analysis of repair mixtures designed are given.

ВВЕДЕНИЕ

Важным направлением обеспечения безопасности дорожного движения является ликвидация аварийной ямочности в холодный период времени. Как показывает отечественный и зарубежный опыт, при своевременном и правильном проведении этих работ развитие повреждений покрытий существенно замедляется.

Одним из вариантов ремонта при содержании дорожных покрытий автомобильных дорог предусматривается применение складируемых органо-минеральных смесей холодной укладки. Эти смеси в последние несколько лет заняли практически основное место среди ремонтных материалов, применяемых в осенне-зимний период для ликвидации аварийной ямочности. Основное их преимущество – отсутствие необходимости разогрева до высокой температуры (в сравнении с горячими литыми асфальтобетонными смесями) и применения специальной техники для транспортировки ремонтного материала. Также СОМС не требуется извлекать из отремонтированного места при устройстве защитных слоев.

Основными материалами для приготовления СОМС являются: гранитный щебень, песок из отсевов дробления горных пород, нефтяной битум, нефтяной пластификатор и поверхностно-активные вещества, полимеры и другие реагенты, регулирующие их физико-механические свойства (деформативность, сдвигоустойчивость, водостойкость).

Необходимо отметить, что применение в составе этих смесей нефтяного пластификатора, поверхностно-активных веществ, полимеров существенно влияет на их стоимость.

Анализ существующего опыта применения органо-минеральных материалов холодной укладки показывает, что исследователями многих стран ведется постоянная работа по усовершенствованию способов производства и разработке новых составов ремонтных материалов с улучшенными технологическими и эксплуатационными свойствами за счет применения других материалов. В связи с этим заслуживает внимания технология приготовления СОМС с использованием в своем составе дополнительного компонента — порошка органо-минерального, представляющего собой вторичный про-

дукт переработки кровельных материалов, что в результате позволит снизить стоимость ремонтного состава.

РАЗРАБОТКА РЕМОНТНЫХ СОСТАВОВ С ИСПОЛЬЗОВАНИЕМ ВТОРИЧНОГО ОРГАНО-МИНЕРАЛЬНОГО ПОРОШКА – ПРОДУКТА, ПОЛУЧЕННОГО ПРИ ПЕРЕРАБОТКЕ КРОВЕЛЬНЫХ МАТЕРИАЛОВ

Применение органо-минерального порошка с целью обеспечения ресурсосбережения, повышения долговечности материалов, улучшения экологической обстановки является важным решением в дорожном строительстве.

Вторичный органо-минеральный порошок (рис. 1) представляет собой продукт, полученный при переработке отходов битумных кровельных материалов (ОБКМ), которые образуются в результате демонтажа при капитальном ремонте рубероидных, мастичных и других кровельных материалов или сносе старых зданий.

Вторичный органо-минеральный порошок в своем составе содержит нефтяной битум (содержание битума – от 70 % до 80 % по массе), а также минеральные и волокнистые наполнители в виде картона, стеклоткани, стеклохолста, содержание которых достигает 30 %. Минеральные и волокнистые наполнители сложным образом взаимодействуют с битумом, содержащимся в кровельных отходах, и выполняют роль армирующих добавок в составе ремонтного материала.

В битуме как в основном компоненте кровельного материала на протяжении длительного времени протекают постоянные окислительные процессы, что в результате приводит к изменению его группового химического состава и качественных характеристик и проявляется в увеличении количества асфальтенов, смол и уменьшении содержания ароматических углеводородов. Для установления группового химического состава битума, полученного

Рисунок 1 – Вторичный органо-минеральный порошок

из вторичного органо-минерального порошка, использовали метод тонкослойной хроматографии с применением аналитической системы «latroscan MK-6s». Для исследований пробу битума получали методом экстрагирования. Усредненные результаты группового химического состава битумов, экстрагированных из вторичного органо-минерального порошка, приведены в таблице 1.

Из приведенных данных видно, что в состарившемся битуме наблюдается пониженное содержание масел и повышенное количество смол и асфальтенов, что нашло подтверждение в научных исследованиях [1–3]. Следовательно, введение вторичного органо-минерального порошка в состав ремонтного материала позволит придать ему дополнительную прочность и теплостойкость.

Отличительной особенностью приготовления СОМС по данной технологии в сравнении с традиционной является дополнительное введение в минеральную часть ремонтного состава вторичного органо-минерального порошка, обработанного тонкодисперсным материалом - минеральным порошком по ГОСТ 16557 [4] или отсевом из материалов дробления гранитных горных пород по ТУ ВУ 200161167.003 [5], для снижения его слеживаемости и смерзаемости. Компоненты, входящие в состав вторичного органо-минерального порошка, обеспечивают прочное взаимодействие с минеральной частью ремонтного материала, ускоряют процесс формирования структуры ремонтного материала и позволяют снизить количество введения комплексного органического вяжущего (смесь рационально подобранных компонентов, таких как органическое вяжущее (битум), разжижитель (пластификатор) и поверхностно-активное вещество).

Материал из полученной смеси в меньшей степени накапливает остаточные деформации при положительных температурах и имеет повышенную деформативную устойчивость

Таблица 1 – Результаты испытаний группового химического состава по методу SARA («Iatroscan MK-6s»)

Наименование показателя, подвергаемого испытаниям	Фактическое среднее значение
насыщенные углеводороды	5,5
ароматические углеводороды	15,34
масла = насыщенные углеводоро- ды + ароматические углеводороды	20,84
смолы	50,38
асфальтены	28,78

при отрицательных температурах. Для достижения качественных характеристик ремонтного материала вторичный органо-минеральный порошок вводится в технологический процесс в холодном состоянии до подачи вяжущего, осуществляется перемешивание с горячими минеральными компонентами, а затем на второй стадии вводится заранее приготовленное комплексное органическое вяжущее и осуществляется дополнительное перемешивание. На производстве дозировка вторичного органо-минерального порошка осуществляется по линии подачи стабилизирующей добавки или другим способом, в зависимости от технических возможностей. При этом необходимо учитывать дозировку комплексного органического вяжущего. Она должна быть уменьшена на величину количества битума, находящегося в составе вторичного органо-минерального порошка для соблюдения расчетного соотношения компонентов, установленного при подборе. Соотношение комплексного органического вяжущего и вторичного органо-минерального порошка принимается с таким расчетом, чтобы содержание остаточного органического вяжущего в составе готовой смеси было в пределах от 4,5 % до 6,5 % согласно СТБ 2175 [6]. На основании лабораторных исследований определено оптимальное количество введения вторичного органо-минерального порощка в состав смеси в количестве 1,5 %.

Для оценки физико-механических характеристик ремонтного материала с применением вторичного органо-минерального порошка и без его использования в лаборатории органических вяжущих государственного предприятия «БелдорНИИ» подобраны и изготовлены смеси органо-минеральные складируемые ремонтные (СОМС-10) в соответствии с требованиями СТБ 2175 [6].

Процесс приготовления СОМС включает 2 этапа (1 этап — приготовление комплексного органического вяжущего, 2 этап — приготовление ремонтного материала).

Для подбора состава ремонтной смеси использовали следующие материалы:

- щебень из плотных горных пород по ГОСТ 8267 [7] фракций 5–10 мм;
- отсев из материалов дробления горных пород по ТУ ВУ 200161167.003 [5];
- битум дорожный марки 70/100 по СТБ 12591 [8] производства ОАО «Нафтан»;
- пластификатор битумов (дизельное топливо по ТУ 38.401-58-296 [9]);
- поверхностно-активное вещество «Азол 1005» марки В по ТУ 2490-075-00205423 [10];

- порошок органо-минеральный вторичный по ТУ ВУ 100984075.003 [11].

Составы органо-минеральных смесей представлены в таблице 2.

Состав комплексного органического вяжущего для органо-минеральных смесей представлен в таблице 3.

Комплексное органическое вяжущее для смесей приготавливалось в лабораторной мешалке. Температура битума нефтяного дорожного марки 70/100 перед смешением не превышала 120 °С, поверхностно-активное вещество «Азол 1005» марки В перед смешением подогревали до температуры 40 °С±2 °С для достижения однородной консистенции и текучего состояния. Перемешивание производилось до получения визуально однородной консистенции вяжущего. Физико-механические показатели изготовлен-

Таблица 2 – Варианты составов смесей органоминеральных складируемых ремонтных СОМС-10

	Содержан	Содержание компо-				
Компоненты смеси	нентов, %					
NOWHOLEH DI CMCCH	Состав № 1	Состав № 2				
Мичеральная п						
Минеральная часть:						
Щебень гранитный фр. 5–10 мм	83,0	83,0				
Отсев из материалов дробления горных пород	17,0	17,0				
Сверх массы минеральной части:						
Порошок органо-минеральный вторичный (содержание битума 70 %)*	1,5	_				
	4,25	5,30				
Комплексное органическое вяжущее	4,40	5,45				
	4,55	5,60				
* Точность дозирования ±2 %.						

Таблица 3 – Вариант состава комплексного органического вяжущего (КОВ)

Компоненты	Содержание компо- нента, % по массе	
	КОВ	
Битум дорожный марки 70/100	76,0	
ПАВ «Азол 1005» марки В	4,0	
Пластификатор (дизельное топливо)	20,0	
П	0/ -	

Примечание – Допустимые отклонения, %, при дозировании компонентов должны соответствовать требованиям СТБ 1033 [12].

ного состава комплексного органического вяжущего приведены в таблице 4.

Таблица 4 – Физико-механические показатели изготовленного состава комплексного органического вяжущего (КОВ)

Наименование показателя	Среднее фактическое значение	
Условная вязкость* по вискозиметру с отверстием 5 мм при 60°C, с	45	
Плотность при 20°C, г/см ³	0,967	
* По ГОСТ 11503 [13].		

Смеси изготавливались путем перемешивания комплексного органического вяжущего и минеральной части при температуре, не превышающей (105±5) °С для составов без использования вторичного органо-минерального порошка. Для смесей с его использованием температурный режим не превышал (125±5) °С. Перемешивание осуществлялось в лабораторной мешалке до получения визуально однородной смеси с полностью покрытыми вяжущим частицами минерального материала.

Испытания образцов СОМС по определению физико-механических показателей производились согласно [14] и [6]. Результаты испытаний приведены в таблице 5.

Из данных таблицы видно, что органо-минеральные смеси, приготовленные как с примене-

нием вторичного органо-минерального порошка, так и без его использования в составе смеси, соответствуют требованиям СТБ 2175 [6]. Дополнительное введение вторичного органо-минерального порошка в минеральную часть незначительно отражается на показателе слеживаемости в сторону его увеличения, при этом увеличивается коэффициент водостойкости при длительном водонасыщении в агрессивной среде, а также прочностные показатели при сжатии при температуре 0°C в среднем на 30 % за счет наличия минеральных и органических включений, а также за счет наличия битума с повышенным содержанием асфальтенов и смол. Увеличение содержания вяжущего в органо-минеральной смеси приводит к увеличению показателя слеживаемости.

ЗАКЛЮЧЕНИЕ

Анализ полученных результатов подтверждает, что комбинированное действие комплексного органического вяжущего и битума, входящего в состав вторичного органо-минерального порошка положительно влияет на физико-механические свойства смеси. Ремонтный материал с применением вторичного органо-минерального порошка позволяет снизить стоимость приготовления смеси в среднем на 25 % и достичь высоких физикомеханических свойств, в связи с этим рекомендуется для опытно-промышленного применения. При подборе состава органических вяжущих необходимо учитывать физико-механические и химические свойства исходных материалов.

Таблица 5 – Физико-механические свойства складируемых органо-минеральных смесей

		Физико-механические свойства				
Номер состава	Количество вяжущего сверх массы минеральной части	Водонасы- щение, % по объему	Набухание, % по объ- ему	Предел прочно- сти при сжатии при температу- ре 0°C, МПа	Коэффициент водостойкости при длительном водонасыщении в агрессивной среде	Слеживае- мость, чис- ло ударов
Состав № 1	4,25	8,2	0	1,87	0,74	9
	4,40	7,8	0	1,59	0,78	11
	4,55	7,5	0	1,75	0,80	12
Состав № 2	5,30	8,7	0	1,42	0,67	8
	5 ,4 5	8,5	0	1,30	0,70	9
	5,60	8,1	0	1,25	0,72	10
Требова	ния СТБ 2175 [6]	Не более 9,0	Не более 1,0	Не менее 0,8	Не менее 0,65	Не более 15

Примечание – Показатель «предел прочности при сжатии» определяли по стандартным образцам после выдерживания их на воздухе при температуре 20 °C не менее 2 сут, а затем прогревали при температуре (60 ± 2) °C в течение 2 ч, после чего образцы остывали до температуры окружающего воздуха, термостатировались при 0 °C и испытывались.

Упакованные смеси могут длительно храниться, с их использованием можно в короткие сроки выполнять работы по ремонту покрытий в зимний период в сухую погоду при температуре не ниже минус 20 °C. Их применение ре-

комендуется в период оперативной ликвидации ямочности на асфальтобетонных покрытиях в целях повышения безопасности дорожного движения и предотвращения разрушения покрытий. 🗅

ЛИТЕРАТУРА

- 1. Печеный, Б. Г., Ахметова, Л. А. Исследование механизма старения битумов в эксплуатационных условиях // Труды БашНИИ НП: сб. Уфа, 1976. № 15. С. 90–100.
- 2. Скрипкин, А. Д., Колесник, Д. А. Исследование и оценка компонентного состава битума в процессе его изотермического прогрева в тонких пленках // Автомобильные дороги и мосты. − 2007. − № 1. − С. 50–52.
- 3. Асадулина, 3. У., Яковлев, В. В. Битум из отходов. Восстановление качественных характеристик битумного вяжущего из отходов ремонта мягких кровель для вторичного использования в дорожном строительстве // Автомобильные дороги. 2013. № 1. С. 71—74.
- 4. Порошок минеральный для асфальтобетонных и органо-минеральных смесей. Технические условия : ГОСТ 16557-2005.
- 5. Отсев из материалов дробления горных пород: ТУ ВУ 200161167.003-2010.
- 6. Смеси органо-минеральные складируемые ремонтные. Технические условия: СТБ 2175-2011.
- 7. Щебень и гравий из плотных горных пород для строительных работ. Технические условия: ГОСТ 8267-93.
- 8. Битумы дорожные. Технические требования и методы испытаний: СТБ 12591-2010.
- 9. Топливо дизельное автомобильное. Технические условия : ТУ 38.401-58-296-2005 (EN 590).
- 10. Реагент «Азол 1005». Технические условия: ТУ 2490-075-00205423-2007.
- 11. Порошки органоминеральные вторичные. Технические условия: ТУ ВУ 100984075.003-2008.
- 12. Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Технические условия : СТБ 1033-2004.
- 13. Битумы нефтяные. Метод определения условной вязкости : ГОСТ 11503-74.
- 14. Смеси асфальтобетонные дорожные, аэродромные и асфальтобетон. Методы испытаний: СТБ 1115-2004.

Статья поступила в редакцию 03.12.13.