го воздуха. Как следствие, КПД на уровне 20–30 практически не достижим. В то же время, применение современной проходной (методической либо полуметодической) печи для нагрева заготовок перед ковкой-штамповкой вполне оправдано, так как в таком агрегате КПД 40–50 % реален.

3. В процессе расчетов следует учитывать, что применение рекомендаций Департамента по энергоэффективности Республики Беларусь относительно стоимости условного топлива приводят к некорректным результатам и завышению эффективности электронагрева. При выполнении обоснования энергосберегающих мероприятий более корректно использовать действующие тарифы на энергоресурсы. Допустима и необходима лишь сравнительная оценка энергопотребления при переводе различных источников энергии в условное топливо, а также сопоставление капитальных и эксплуатационных затрат.

УДК 669.71/531.262

Г.А. РУМЯНЦЕВА, канд. техн. наук, Б.М. НЕМЕНЕНОК, д-р техн. наук, Е.А. ВОЛЬСКИЙ, И.А. ГОРБЕЛЬ (БНТУ)

ПОВЫШЕНИЕ СРОКА СЛУЖБЫ ФУТЕРОВКИ ПЕЧЕЙ ДЛЯ ПЛАВКИ АЛЮМИНИЕВЫХ СПЛАВОВ

Анализ работы плавильных печей цехов и участков алюминиевого литья показал, что срок службы футеровки во многом зависит от типа, назначения, емкости печи, марок выплавляемых сплавов, режима работы печи, вида шихты и способа ее загрузки.

Футеровка печей в процессе эксплуатации подвергается воздействию многих разрушающих факторов, среди которых необходимо выделить следующие:

1) Механическое воздействие на футеровку ударов шихты в ходе ее загрузки и инструмента в процессе чистки стен и пода от шлаковых наростов и настылей. В меньшей степени механическое воздействие проявляется от потоков движущегося расплава.

- 2) Физическое воздействие, связанное с проникновением расплава в футеровку по порам, швам и трещинам, с последующим ее разрушением из-за разницы в коэффициентах линейного расширения металла и огнеупора.
- 3) Химическое взаимодействие материала огнеупора с компонентами расплава, что сопровождается восстановлением кремния алюминием из SiO_2 и ошлаковыванием футеровки с образованием шлаковых настылей и наростов. При этом изменения, происходящие с огнеупорами в результате этого взаимодействия, настолько значительны, что они существенно изменяют способность огнеупора противостоять всем другим воздействиям.

В таблице 1 приведено изменение состава шамотной футеровки в печи для плавки алюминия после одного года ее эксплуатации [1].

Таблица 1 – Изменение состава футеровки печи для плавки алюминия [1]

Анализируемые	Состав футеровки, %				
огнеупоры	SiO_2	Al_2O_3	Fe_2O_3	MgO	Al
Исходный состав	61,5	23,7	0,94	0,42	0
После года эксплуатации	2,06	82,5	0,65	1,7	7,6

Видно, что в ходе эксплуатации печей происходит восстановление кремнезема и оксида железа при значительной металлизации огнеупоров. Последнее приводит к увеличению теплопроводности рабочего, а затем и теплоизоляционного слоя вследствие кристаллизации металла в порах огнеупора. Взаимодействие алюмосиликатных огнеупоров с расплавами алюминия развивается от поверхности контакта вглубь кладки не равномерно, а с опережением в местах прохода металла по трещинам и неплотностям.

С целью выбора наиболее устойчивых к расплаву алюминия футеровок анализировали их составы (таблица 2) и зависимость стандартного изобарного потенциала образования некоторых оксидов от температуры (рисунок 1).

Таблица 2 – Химический состав огнеупоров, применяемых для футеровки печей при плавке алюминиевых сплавов [2, 3]

Моториол	Химический состав, %					
Материал	Al_2O_3	SiO_2	CaO Fe ₂ O ₃		Прочие соединения	
Шамот	20-45	50-75	_	1,0-3,0	$(Na_2O + K_2O) < 3,5$	
Муллит	72–75	24-26	_	0,3-1,0	$(Na_2O + K_2O) < 0.3-0.6$	
Андалузит	59,0	41,0	_	_	_	
Боксит	90,0	10,0	_	_	-	
Корунд	99,5	-	_	_	ı	
Resistal B85 Spezial	83,3	7,0		1,4	BaO – 1,8	
	65,5	7,0	_	1,4	$P_2O_5 - 3,1$	
MTNFL P-76	76,0	10,0	_	1,5	BaO - 5,0	
	70,0	10,0		1,5	$P_2O_5 - 4,0$	
ВГББ-3Ф	> 65,0	> 12			$BaSO_4 - 7 - 10$	
	> 05,0	/ 12			$P_2O_5 - 2,5-4,0$	
Алит-72 АРС-Ал	82,0	3,0	3,8	0,9	_	
Алит-65 АРС-Ал	66,0	22,0	3,8	0,7	_	
Алит-72 АР	85,0	9,0	2,9	1,0	_	
Алит-42 АРС-Ал	52,0	36,0	3,8	0,9	_	
Алкорит-53/1,5	54,0	43,0	1,5	0,7	_	
Алкорит-85/1,5	86,0	8,0	1,5	1,1	_	
Алкор-76 А	86,0	4,0	6,0	1,2	_	
Алкор-37-25	40,0	43,0	11,0	4,0	_	
Алакс-1,4-1350	43,0	40,0	12,0	3,0	_	
Алакс-0,9-1000	32,0	28,0	17,0	12,0	_	

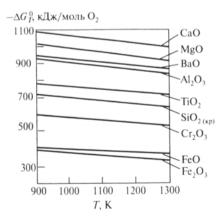


Рисунок 1 — Зависимость стандартного изобарного потенциала образования некоторых оксидов от температуры [2]

Учитывая, что степень химического взаимодействия огнеупорного материала с расплавом должна быть минимальна, в составе огнеупора нежелательно большое содержание оксидов, способных восстанавливаться жидким алюминием. Из рисунка 1 следует, что оксиды, расположенные выше Al_2O_3 , имеют более низкую свободную энергию и не могут быть восстановлены расплавленным алюминием.

Кристаллический кремнезем, оксиды железа, титана и хрома способны взаимодействовать с расплавом алюминия и восстанавливаться в процессе эксплуатации печей. Поэтому содержание SiO_2 в современных огнеупорах (Resistal B85 Spezial, MTNFL P-76 и ВГББ-3Ф) снижено до 7–12 % (таблица 2). Исходя из рисунка 1, на увеличении срока службы огнеупоров положительно может сказаться наличие в их составе оксидов кальция, бария и магния. Это подтверждается и данными таблицы 2. Так, все огнеупоры иностранного производства и ВГББ-3Ф содержат в своем составе 1,8–5,0 % ВаО или 7–10 % ВаSO₄, а огнеупорные бетоны серии Алкор и Алакс содержат 6,0–17,0 % СаО. Расчеты показывают, что восстановление кремния алюминием возможно не только из кремнезема, но и из более сложных силикатов:

$$4Al + 3SiO_2 \rightarrow 2Al_2O_3 + 3Si; \Delta G = -528,25 кДж/моль;$$
 (1)

8Al +
$$3(3Al_2O_3 \cdot 2SiO_2) \rightarrow 13Al_2O_3 + 6Si;$$
 $\Delta G = -1101,8$ кДж/моль; (2)

$$4Al + 3CaO \cdot SiO_2 \rightarrow 2Al_2O_3 + 3CaO + 3Si; \Delta G = -178,5$$
 кДж/моль; (3)

$$4Al + 3MgO \cdot SiO_2 \rightarrow 2Al_2O_3 + 3MgO + 3Si; \Delta G = -98,3 кДж/моль; (4)$$

$$4Al + 3ZrO_2 \cdot SiO_2 \rightarrow 2Al_2O_3 + 3Si + 3ZrO_2; \Delta G = -527,6 кДж/моль.$$
 (5)

Объемный эффект большинства реакций алюминия с алюмосиликатами на поверхности отрицателен, и продукты реакций занимают меньший объем, а образовавшиеся полости заполняются поступающим расплавом алюминия, и продукты реакции не образуют сплошную пленку. Пористая пленка оксида алюминия не является барьером для дальнейшего взаимодействия алюминия с огнеупором. Поэтому расплав алюминия и магния (который входит в состав большинства литейных алюминиевых сплавов) проникает вглубь огнеупора по порам и полостям, образующимся при реакциях и уменьшении размеров зерен огнеупора. В отдельных случаях в та-

ких порах возможно взаимодействие алюминия и магния с кислородом, при этом продукты реакции будут расклинивать поры и вызывать растрескивание огнеупора с дальнейшим проникновением металла вглубь футеровки.

Принято считать [3], что степень взаимодействия футеровки с расплавом (коррозии) обратно пропорциональна содержанию оксида алюминия в огнеупорном материале. Однако эта зависимость нарушается, если алюминиевый сплав содержит магний. В этом случае оксид алюминия реагирует с магнием с образованием алюмомагнезиальной шпинели, что способствует более быстрому зарастанию рабочего пространства печи и перерождению футеровки.

Существенное влияние на стойкость футеровки оказывает ее смачиваемость расплавом алюминия. При краевом угле смачивания менее 90° поры любого диаметра проницаемы для расплава. Для снижения смачиваемости расплавом керамики в состав алюмосиликатных огнеупорных масс вводят различные добавки, такие, как сульфат бария $BaSO_4$, фторид кальция CaF_2 , фторид алюминия AlF_3 , борат алюминия $AlBO_3$, титанат алюминия AlT_1 , волластонит $CaSiO_3$, карбид кремния SiC, нитрид алюминия AlN и их композиции [3]. Как видно из рисунка 2, добавки $BaSO_4$ увеличивают краевой угол смачивания до $105-125^{\circ}$.

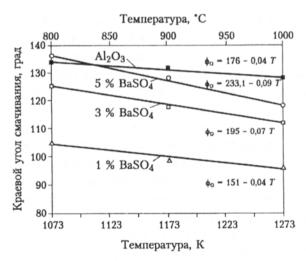


Рисунок 2 — Влияние температуры и добавок $BaSO_4$ на краевой угол смачивания расплавом алюминия подложки из Al_2O_3 [3]

В присутствии сульфата бария, расплавленного алюминия и кислорода воздуха протекает реакция

$$3BaSO_4 + 8Al + 6O_2 \rightarrow 3BaO \cdot Al_2O_3 + Al_2(SO_4)_3,$$
 (6)

которая приводит к зарастанию пор продуктами реакции. В дальнейшем $BaO \cdot Al_2O_3$ может претерпевать химическое превращение с образованием цельзиана $BaO \cdot Al_2O_3 \cdot 2SiO_2$.

Создание огнеупорных материалов, обладающих комплексом требуемых свойств, не всегда представляется возможным. Поэтому элементы футеровки пламенных печей должны выполняться из разных материалов, которые в максимальной степени могут противостоять факторам ее износа (таблица 3).

Таблица 3 — Влияние различных факторов на износ элементов футеровки пламенных печей [1]*

Элемент футеровки	Меха- нические повреж- дения	Эро- зия	Проник- новение расплава	Абразив- ный износ	Термо- удар	Рост настылей корунда	Химичес- кое взаимо- действие	
Под печи	2	1	1	1		1	1	
Стены	1	1	3	1		2	2	
ниже								
уровня								
металла								
Загрузоч-	3		1	3	1	1		
ный откос								
Порог	3			2	2			
загрузоч-								
ного окна								
Стены	1				1	1	1	
выше								
уровня								
металла								
Свод	1				1			
Горелоч-					3		1	
ный камень								
Дверь	1				2		1	
Боров					1		1	
* Степень в	* Степень влияния: 1 – малая; 2 – средняя; 3 – сильная							

Части футеровки, которые контактируют с жидким расплавом, следует выполнять многослойными. При этом для исключения коррозии огнеупоров можно использовать материалы, плохо смачиваемые расплавом, или защищать их рабочие поверхности специальными огнеупорными и теплостойкими покрытиями, полученными с использованием СВС-технологий [4].

Это позволит, во-первых, повысить срок службы огнеупорной футеровки, и, во-вторых, исключить загрязнение расплава продуктами реакций, протекающих между расплавом и составляющими футеровки.

Литература

- **1. Непрерывное** литье алюминиевых сплавов / В.И. Напалков [и др.]. М.: Интермет Инжиринг, 2005. 512 с.
- **2. Макаров, Г.С.** Слитки из алюминиевых сплавов с магнием и кремнием для прессования. Основы производства / Г.С. Макаров. М.: Интермет Инжиринг, 2011. 528 с.
- **3. Волочко, А.Т.** Алюминий: Технологии и оборудование для получения литых изделий / А.Т. Волочко, М.А. Садоха. Минск: Беларус. навука, 2011. 387 с.
- **4. Жукова, А.А.** Керамические материалы и покрытия для тепловых агрегатов, полученные с использованием синтезированного сырья и отходов металлургического производства: автореф. дисс. ...канд. техн. наук: 05.16.09 / А.А. Жукова; ФТИ НАНБ. Минск, 2012. 23 с.

УДК 621.74

С.В. КОРНЕЕВ, канд. техн. наук (БНТУ)

ОЦЕНКА ЭФФЕКТИВНОСТИ ИНТЕНСИФИКАЦИИ ПЛАВКИ СТАЛИ В ЭЛЕКТРОДУГОВЫХ ПЕЧАХ*

Введение. Плавка стали в электрических печах является одним из основных технологических методов получения жидкого расплава в металлургическом и литейном производстве в Республике Беларусь.