УДК 621.777.016.2:666.63:519.2

Е.С. ГОЛУБЦОВА, д-р техн. наук (БНТУ) Н.Б. КАЛЕДИНА (БГТУ) В.С. НИСС, канд. техн. наук (БНТУ)

ОПТИМИЗАЦИЯ СТРУКТУРЫ И СВОЙСТВ ГОРЯЧЕПРЕССОВАННОЙ НИТРИДНОЙ КЕРАМИКИ ИЗ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ. СООБЩЕНИЕ II. УСТАНОВЛЕНИЕ КОРРЕЛЯЦИОННОЙ СВЯЗИ МЕЖДУ МАССОВОЙ ДОЛЕЙ У203, ПРОЧНОСТЬЮ НА ИЗГИБ И КОЭФФИЦИЕНТОМ ВЯЗКОСТИ РАЗРУШЕНИЯ

Связь содержания в порошках α -Si₃N₄ и Y₂O₃ с прочностными свойствами керамики можно объяснить морфологией растущих зерен, а также составом и состоянием фаз на межзеренных границах. Эту связь можно представить в виде таблицы 1 [1], где K_{1c} – коэф-фициент вязкости разрушения.

		1	1
Ν	Доля Y ₂ O, %	$\sigma_{_{\rm ИЗГ}}$, МПа	K_{1c} , МПа·м 0,5
1	2,3	380	0,7
2	5,0	430	3,5
3	9,5	650	7,0
4	15,0	720	8,5
5	17,8	1080	9,0

Таблица 1 – Значения доли Y_2O_3 , $\sigma_{_{M3F}}$ и K_{1c}

Тесноту этой связи можно определить с помощью коэффициента парной корреляции *r_{ii}*, рассчитываемого по формуле:

$$r_{i,j} = \frac{\sum_{1}^{n} (y_1 - \overline{y}_1)(y_2 - \overline{y}_2)}{\sqrt{\sum_{1}^{n} (y_1 - \overline{y}_1)^2 (y_2 - \overline{y}_2)^2}},$$
(1)

224

где $\Delta y_i = (y_i - \overline{y}_j)$, $\Delta y_j = (y_j - \overline{y}_j)$ – разности между текущим и средним значениями *i*-го и *j*-го параметров оптимизации, N – число опытов.

Пользуясь данными таблицы 1, по формуле (1) рассчитали значения коэффициентов парной корреляции $r_{1,2}$ ($y_1 - доля Y_2O_3$) $y_2 = \sigma_{\rm изг}$; $r_{1,3}$ ($y_3 - K_{1c}$) и $r_{2,3}$. Они соответственно оказались равными: $r_{1,2} = 0,946$; $r_{1,3} = 0,974$; $r_{2,3} = 0,902$, что больше табличного (критического) значения $r_{\rm кp} = 0,8783$ (при $\alpha = 0,05$; f = 3). Это позволяет выразить связь между долей $Y_2O_3(y_1)$, $\sigma_{\rm изг}(y_2)$ и $K_{1c}(y_3)$ линейными корреляционными уравнениями [2]:

$$K_{1c}, \text{ M}\Pi a \cdot M^{0.5} = 0.52 + 0.00933 \sigma_{\text{M3F}}$$
, (2)

$$Y_2 O_3, \% = 0,022\sigma_{_{M3\Gamma}} - 4,424, \qquad (3)$$

$$Y_2O_3,\% = 2,2K_{1c} - 3,611.$$
(4)

Эти уравнения позволяют по величине доли $Y_2O_3(y_1)$ прогнозировать с вероятностью 95 % значения $\sigma_{_{H3F}}$ и K_{1c} .

Представляет практический интерес сопоставление выявленных особенностей структур нитридной керамики с влиянием состава порошковых смесей на прочность и трещиностойкость керамики.

Для этого был проведен эксперимент по плану 2×3, где 2 – два уровня температуры ($x_1 = -1$, 20 °C и $x_1 = +1$, 1400 °C), а 3 – три уровня содержания Y₂O₃ ($x_2 = -1$, 2 %; $x_2 = +1$, 10 %; $x_3 = +1$, 18 %). В качестве параметров оптимизации были выбраны $y_1 - \sigma_{\text{изг}}$, МПа и $y_2 - K_{1c}$, МПа·м^{0,5}, а в качестве факторов: температура испытаний (x_1) и доля Y₂O₃ (x_2). Ошибки воспроизводимости соответственно составили: $S_1 = 14$ МПа и $S_2 = 0,36$ МПа·м^{0,5}. Матрица плана 2×3 и результаты опытов приведены в таблице 2.

После статистической обработки результатов эксперимента и проверки значимости коэффициентов уравнения регрессии получены адекватные модели в виде полиномов второго порядка:

$$y_1 = \sigma_{_{\rm H3F}} = 640 + 200x_2 - 80x_2^2;$$
 (5)

$$y_2 = K_{1c} = 8,33 + 2,16x_2 - 1,83x_2^2 .$$
 (6)

225

Графическое представление этих уравнений изображено на рисунке 1.

N	<i>x</i> ₁	<i>x</i> ₂	$x_1 x_2$	x_{2}^{2}	$y_1 = \sigma_{_{M3\Gamma}}$	$y_2 = K_{1c}$
1	_	_	+	+	360	4,67
2	_	0	0	0	600	8,66
3	_	+	_	+	760	8,66
4	+	_	_	+	360	4,00
5	+	0	0	0	680	8,00
6	+	+	+	+	760	8,66

Таблица 2 – Матрица плана 2×3 и результаты опытов

Рисунок 1 – Графическое представление уравнений (5) и (6)

Анализ полученных уравнений показывает, что температура испытаний в данном случае не оказывает существенного влияния на оба параметра оптимизации. Главное определяющее влияние оказывает содержание Y₂O₃ (*x*₂). Максимальные величины прочности ($\sigma_{\text{изг}} = 760 \text{ МПа}$) и трещиностойкости ($K_{1c} = 8,66 \text{ МПа} \cdot \text{м}^{0,5}$) получены при $x_1 = -1$ (20 °C) и $x_2 = +1$ (18 % Y₂O₃), а также при $x_1 = +1$ (1400 °C) и $x_2 = +1$ (10 % Y₂O₃).

Оба уравнения (5) и (6) представляют собой параболы с точкой перегиба $x_{2e} = +1,25$ (для $\sigma_{\text{изг}}$) и $x_{2e} = +0,59$, в которых $\sigma_{\text{изг}} = 765$ МПа, а $K_{1c} = 8,96$ МПа·м^{0,5}. Поэтому оптимальными уровнями содержания

 Y_2O_3 будут: для прочности 12 %, а для $K_{1c} - 5,3$ %. Дальнейшее повышение доли Y_2O_3 приведет к снижению прочности и трещиностойкости нитридной керамики.

Повышение уровня прочности с изменением состава порошковой смеси носит более монотонный характер (до содержания Y_2O_3 12 %) и отражает закономерности формирования структуры и чувствительность прочностных свойств к форме растущих зерен. Наличие удлиненных зерен вызывает в структуре эффект сцепления с хорошим механическим контактом. В итоге повышается напряжение межзеренного разрушения и возрастает уровень прочности.

Особенности структуры определяют и характер разрушения керамики под нагрузкой. Для образцов с небольшим содержанием Y_2O_3 (2–3 %) преобладает механизм межзеренного разрушения, при котором наблюдается большое количество гладких ступенек скола. Трещины в этом случае могут распространяться без значительных энергетических затрат.

С повышением содержания оксида иттрия и уменьшением соотношения β -Si₃N₄ / α -Si₃N₄ топография разрушения в керамическом материале становится более грубой с преобладанием внутризеренного скола и ступеньками скола, ручьистым изломом. Зерна размерами 0,1–0,3 мкм разрушались по границам зерна, крупные – по телу зерна, удлиненные – сколом по зерну. Повышение доли внутризеренного разрушения является одной из причин возрастания энергии разрушения и прочности.

Представляет интерес выявление связи между плотностью ρ , пределом прочности на изгиб $\sigma_{изг}$ и трещиностойкостью K_{1c} исследуемой керамики. В таблице 3 представлены результаты измерений этих параметров в зависимости от содержания Y_2O_3 в керамике.

Пользуясь данными этой таблицы, можно по формуле (1) рассчитать коэффициенты парной корреляции $r_{1,2}$; $r_{1,3}$; $r_{1,4}$; $r_{1,5}$ и т.д. Они оказались равными: $r_{1,2} = 0.92$; $r_{1,3} = 0.964$; $r_{1,4} = 0.908$; $r_{1,5} = 0.97$ и $r_{2,3} = 0.944$, что больше табличного значения $r_{\rm kp} = 0.7977$ (даже при $\alpha = 0.01$ и $f_1 = 7$). Следовательно, связь между указанными параметрами можно представить в виде корреляционных уравнений:

$$y_2 = \sigma_{_{\rm H3F}}, \, {\rm M}\Pi a = 694\rho - 1593;$$
 (7)

$$y_3 = K_{1c}, M\Pi a \cdot M^{0,5} = 6,487 \rho - 13,23;$$
 (8)

$$y_4 = \sigma_{_{\text{H3F}}} (t = 1400 \text{ °C}) = 658\rho - 1469 ;$$
 (9)

$$y_5 = K_{1c} (t = 1400 \ ^\circ \text{C}) = 8,8\rho - 21;$$
 (10)

$$y_3 = K_{1c} (t = 20 \text{ °C}) = 2,24 + 0,00842\sigma_{_{H3F}};$$
 (11)

$$\rho = 2,86 + 0,032(Y_2O_3,\%).$$
 (12)

Таблица 3 – Зависимость плотности, предела прочности и трещиностойкости от содержания Y_2O_3

Доля	N = 0	$y_2 = \sigma_{_{\rm H3\Gamma}}$	$y_3 = K_{1c}$	$y_4 = \sigma_{_{M3\Gamma}}$	$y_5 = K_{1c}$
Y ₂ O ₃ , %	$y_1 - p$	$(t = 20 ^{\circ}\text{C})$	$(t = 20 ^{\circ}\text{C})$	$(t = 1400 \ ^{\circ}\text{C})$	$(t = 1400 \ ^{\circ}\text{C})$
2	2,71	320	4,67	360	3,33
4	2,96	440	5,72	440	4,66
6	3,14	520	6,66	520	5,99
8	3,25	600	7,32	608	7,32
10	3,33	640	8,38	640	7,99
12	3,31	680	8,52	720	8,65
14	3,31	760	8,65	760	8,65
16	3,31	800	8,66	800	8,64
18	3,31	760	8,00	760	7,99

Таким образом, зная, например, величину плотности ($y_1 = \rho$), или доли Y₂O₃, можно рассчитать значения всех остальных параметров ($\sigma_{\text{изг}}$, K_{1c}), пользуясь уравнениями (7)–(12).

Влияние состояния межзеренной фазы на высокотемпературные прочностные свойства нитридной керамики исследовалось с помощью применяемого ранее плана эксперимента 2×3, где 2 – два уровня содержания Y_2O_3 (10 и 18 %), а 3 – три уровня температуры испытаний (900, 1200 и 1500 °C). Ошибка воспроизводимости опытов составила 6,5 МПа.

В качестве параметра оптимизации был выбран предел прочности на изгиб ($y = \sigma_{\text{изг}}$, МПа), а в качестве факторов – доля Y₂O₃, % и температура испытаний (x_1 и x_2).

Матрица плана и результаты эксперимента приведены в таблице 4, где x_1 и x_2 – кодированные уровни температуры испытаний и доли Y_2O_3 .

N⁰	<i>x</i> ₂	<i>x</i> ₁	$x_1 x_2$	x_1^2	$y = \sigma_{_{\rm ИЗГ}}, M\Pi a$
1	_	—	+	+	625
2	_	0	0	0	575
3	_	+	_	+	325
4	+	_	_	+	825
5	+	0	0	0	800
6	+	+	+	+	750

Таблица 4 – Матрица плана 2×3

После обработки результатов эксперимента и проверки значимости коэффициентов уравнения регрессии получена адекватная модель в виде полинома второго порядка ($F_p = 2,42 < F_{KD} = 6,6$):

$$y = \sigma_{_{\rm H3F}}, \, {\rm M}\Pi a = \, 688 - 94x_1 + 142x_2 + 56x_1x_2 - 56x_1^2, \, (13)$$

а графическое ее представление в двухмерном и трехмерном изображениях дано на рисунке 2.

Рисунок 2 – Графическое представление модели (13) в двухмерном и трехмерном изображениях

Анализ этого уравнения показывает, что оба фактора оказывают примерно одинаковое влияние на предел прочности, но характер их влияния различен. Если с ростом содержания $Y_2O_3(x_2)$ предел прочности $\sigma_{\rm изг}$ увеличивается, то с увеличением температуры испытаний (x_1), напротив, $\sigma_{\rm изг}$ уменьшается.

Максимальная величина $\sigma_{\text{изг}} = 825$ МПа получена при $x_2 = +1$ (18 % Y₂O₃) и $x_1 = -1$ (t = 900 °C).

Таким образом, горячепрессованная керамика с массовой долей оксида иттрия 10 и 18 % сохраняет устойчиво высокий уровень прочности до температуры 1000 °C.

Если в уравнение (13) подставить $x_2 = +1$ (18 % Y₂O₃), то получим зависимость предела прочности от температуры испытаний в виде параболы:

$$y = \sigma_{_{H3\Gamma}}, M\Pi a = 830 - 38x_1 - 56x_1^2.$$
 (14)

Графическое изображение модели (14) представлено на рисунке 3.

Рисунок 3 – Графическое изображение модели (14)

Эта парабола имеет точку перегиба $x_{1e} = -\frac{38}{2 \cdot 56} = -0.34 (1000 \ ^\circ\text{C}),$ в которой $y_S = 836 \text{ MII}a.$

Выводы. Закономерности кристаллизации вторичных фаз в составе керамики и изменения их содержания обусловлены состоянием исходной высокоактивной ультрадисперсной системы и реакциями на границах фаз в процессе горячего прессования.

С повышением содержания оксида иттрия (Y_2O_3) дисперсность системы увеличивается. Наряду с возрастанием в целом тугоплавких фаз в керамике отмечается и повышение степени их кристаллизации, снижение содержания стеклофазы.

Полученные адекватные уравнения регрессии позволяют оптимизировать процесс получения нитридной керамики при горячем прессовании и получить высокие значения предела прочности на изгиб $\sigma_{\rm изг}$ и трещиностойкости K_{1c} .

Корреляционные уравнения, устанавливающие связь между плотностью, пределом прочности на изгиб и трещиностойкостью, позволяют по одному из параметров прогнозировать величину других параметров с вероятностью 95 %.

Горячепрессованные материалы из ультрадисперсных композиционных порошковых смесей могут использоваться при изготовлении деталей двигателей внутреннего сгорания и высокоскоростных подшипников.

Литература

1. Ткачева, И.И. Анализ дефектов микроструктуры горячепрессованного нитрида кремния в зависимости от технологических характеристик исходного сырья / И.И. Ткачева, В.М. Землянская, Ю.Ф. Тюриков // Конструкции и технология получения изделий из неметаллических материалов. Ч. І. Жаропрочные керамические материалы: тез. докл. XI Всесоюзной конф. – Обнинск: НПП «Технология», 1988. – С. 46–47.

2. Жарский, И.М. Планирование и организация эксперимента: Учебное пособие / И.М. Жарский, Б.А. Каледин, И.Ф. Кузьмицкий. – Минск: Изд. БГТУ, 2003. – 179 с.