УДК 629.03

ИСПОЛЬЗОВАНИЕ СТРАТЕГИИ DSAC ПРИ ТРОГАНИИ АВТОПОЕЗДА С МЕСТА В АВТОМАТИЧЕСКОМ РЕЖИМЕ РАБОТЫ СИЛОВОГО АГРЕГАТА

О. С. РУКТЕШЕЛЬ, В. А. КУСЯК

Белорусский национальный технический университет, г. Минск

А. В. БЕЛЕВИЧ, В. И. ЛУЦКИЙ

Объединенный институт машиностроения НАН Беларуси, г. Минск

Введение

Современные тенденции развития автомобилестроения характеризуются повсеместным внедрением систем автоматизации управления силовым агрегатом, обеспечивающим повышение его ресурса и снижающим нагрузки на водителя.

Обзор мехатронных систем управления трансмиссией, на базе сухого фрикционного сцепления и механической коробки передач (КП), показал, что при практически идентичном наборе датчиков, конструкция исполнительных механизмов (ИМ), а также стратегия управления ими, различные.

Как правило, для управления КП используются ИМ поршневого [1] или диафрагменного [2] типов, управляемые от контроллера посредством двухпозиционных электромагнитных клапанов (ЭМК). Также встречается вариант установки на крышке КП электродвигателей постоянного тока [3, с. 9], один из которых осуществляет выбор, а второй — включение передачи.

Включение фрикционного сцепления, особенно в процессе трогания с места, требует более сложного алгоритма управления. Для реализации данной задачи немецкий концерн ZF Friedrichshafen AG использует пневматический силовой цилиндр, шток которого шарнирно соединен с рычагом вала вилки выключения сцепления. В корпус ИМ интегрированы четыре ЭМК с различными по диаметру дросселирующими отверстиями [4, с. 69]. Клапаны работают попарно синхронно или в режиме последовательного управления. Контроллер управляет временем и тактовой частотой открытия-закрытия соответствующего клапана или группы клапанов. Алгоритм управления, а также параметры, по которым осуществляется обратная связь, представляют основное «ноу-хау» фирмы разработчика и в материалах открытой печати не приводятся.

Корпорация Eaton (США) и концерн Daimler-Benz (Германия) также имеют разработки подобного типа: мехатронные системы управления силовым агрегатом Eaton Fuller UltraShift Transmission [5] и Mercedes Telligent automated. При этом интеллектуальная «начинка» (управляющий алгоритм, тип и используемая стратегия управления ЭМК, тип и параметр обратной связи, тип регулятора, используемого в цепи управления) в доступной технической литературе представлена «черным ящиком».

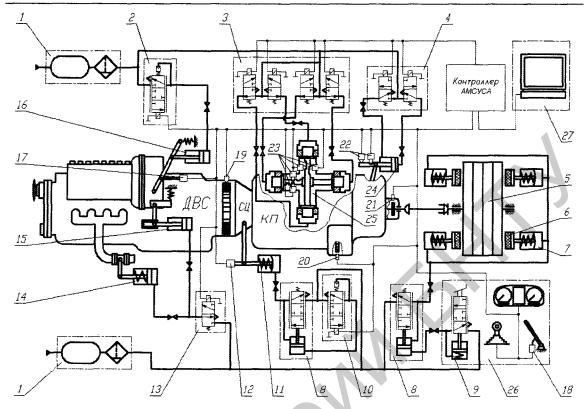
Цель работы — проверка функциональной работоспособности спроектированной мехатронной системы управления силовым агрегатом автопоезда при трогании с места в автоматическом режиме путем проведения полунатурного эксперимента.

Основная часть

Специалисты кафедры «Автомобили» БНТУ совместно с ОИМ НАН Беларуси разработали принципиальную схему испытательного стенда для отладки автоматизированной мехатронной системы управления силовым агрегатом (АМСУСА) автопоезда МАЗ530905-010 полной массой 35 т. Отличительной особенностью предларешения является использование пневматического гаемого технического пропорционального клапана, управляющего подачей сжатого воздуха в рабочую полость исполнительного механизма сцепления. Из двух наиболее прогрессивных стратегий управления пропорциональными ЭМК, используемыми в мировой практике, - Direct Semi-active Control (DSAC) и Direct active Control (DAC) - была выбрана стратегия DSAC, заключающаяся в подаче на обмотку пропорционального клапана широтно-импульсного сигнала с последующим изменением скважности в соответствии с заданным алгоритмом. Управление пропорциональными ЭМК при помощи прямого токового сигнала (стратегия DAC) имеет преимущество в быстродействии. Выигрыш по времени при нарастании/падении давления в полости силового цилиндра составляет приблизительно 0,08 с [6]. Однако для генерации такого сигнала контроллер должен иметь соответствующие технические характеристики.

Указанный недостаток выбранной стратегии частично компенсируется использованием пневмокамеры в качестве ИМ сцепления. По данным компании Wabco (Германия), диафрагменные ИМ, имеющие меньшую зону нечувствительности, обладают более высоким быстродействием (на 20–25 мс, [7, с. 11]) по сравнению с поршневыми аналогами.

Монтаж стенда был произведен на базе испытательного центра Минского автомобильного завода. Помимо проверки функциональной работоспособности спроектированной АМСУСА, стенд предназначен для отработки алгоритмов трогания с места, маневрирования и переключения передач в автоматическом режиме работы силового агрегата. Принципиальная схема стенда изображена на рис. 1.


Стенд инерционный, разомкнутого типа, включает серийный силовой агрегат, маховые массы с механизмом торможения, пневматическую питающую часть и информационно-управляющую систему.

Силовой агрегат состоит из дизельного двигателя ЯМЗ-7511.10, однодискового фрикционного сцепления ЯМЗ-184 вытяжного типа с диафрагменной нажимной пружиной и 9-ступенчатой коробки передач МАЗ-543205 с планетарным демультипликатором.

Двигатель имеет механическое управление топливоподачей. Рычаг регулятора частоты вращения топливного насоса высокого давления (ТНВД) перемещается пневматическим силовым цилиндром 16. Соответствие угла поворота рычага и положения педали подачи топлива обеспечивается контроллером АМСУСА с помощью пропорционального клапана 2 и датчиков 17, 18.

В качестве ИМ привода сцепления использована пневмокамера 11. Управление сцеплением осуществляется при помощи пропорционального клапана 10 и ускорительного клапана 8, который служит для более быстрого впуска и выпуска воздуха из пневмокамеры.

Коробка передач оборудована ИМ 25 переключения передач с пневматическим приводом. Блок 3 двухпозиционных ЭМК управляет наполнением полостей силовых цилиндров ИМ. Выбор и включение передачи происходят за счет сброса давления воздуха в соответствующих полостях. Установка нейтрали обеспечивается подачей воздуха во все полости силовых цилиндров при обесточенных клапанах. Переключение диапазонов демультипликатора осуществляется клапанами 4 и двухпозиционным пневмоцилиндром 24.

1 – питающая часть пневмопривода; 2, 10 – пропорциональные ЭМК управления, соответственно, топливоподачей и сцеплением; 3, 4 – блок ЭМК управления ИМ, соответственно, КП и демультипликатора; 5 – инерционная маховая масса; 6 – тормозная колодка; 7 – тормозная камера; 8 – ускорительный клапан; 9 – тормозной кран; 11 – ИМ (пневмокамера) привода сцепления; 12, 17, 18 – датчики перемещения; 19–21 – датчики частоты вращения; 22, 23 – концевые выключатели; 13 – клапан управления моторным тормозом и выключением подачи топлива;

14–16 – ИМ, соответственно, моторного тормоза, выключения подачи топлива и рычага топливоподачи; 24 – ИМ демультипликатора; 25 – ИМ КП; 26 – пульт управления; 27 – ПЭВМ

Рис. 1. Принципиальная схема стенда АМСУСА:

Моторный тормоз используется для выравнивания угловых скоростей синхронизируемых элементов КП при переключении на высшую передачу. Электромагнитный клапан 13 подает сжатый воздух в пневмоцилиндр 14 управления заслонкой моторного тормоза и пневмоцилиндр 15 выключения подачи топлива.

Имитация сопротивления движению автомобиля осуществляется механизмом торможения. Механизм состоит из четырех тормозных камер 7, прижимающих колодки 6 к маховым массам 5. Тормозной момент регулируется двумя следящими клапанами 8 и 9.

Информационно-управляющая система стенда представляет собой комплекс устройств для получения, преобразования и регистрации информации о функционировании объекта испытаний. В нее входят датчики АМСУСА, контроллер с аналогоцифровым преобразователем, ПЭВМ 27 с программным обеспечением и линии связи.

На пульте 27 управления, имитирующем рабочее место водителя, расположены органы управления узлами стенда и контрольные приборы, позволяющие следить за работой автоматизированной мехатронной системы. Оператор выбирает селектором режим работы силового агрегата, а затем воздействует на педаль 18 управления топливоподачей. Изменение топливоподачи дизельного двигателя, включение-выклю-

чение сцепления и переключение ступеней в коробке происходит автоматически в результате срабатывания пневматических силовых исполнительных механизмов 11, 16, 24 и 25 при подаче сигнала от контроллера на соответствующий ЭМК 2-4, 10 или их комбинацию.

Функциональность разработанной мехатронной системы и работоспособность алгоритмов, управляющих процессом трогания автомобиля с места, подтверждена серией опытных испытаний.

В частности, были получены характеристики ИМ сцепления и двигателя, а также определены зоны управления пропорциональных клапанов (рис. 2–4).

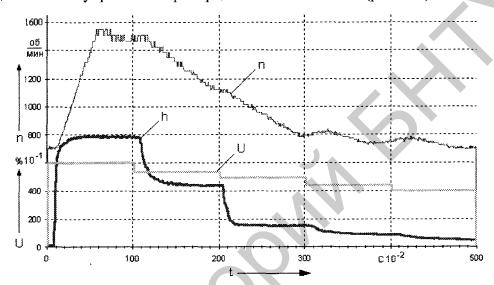
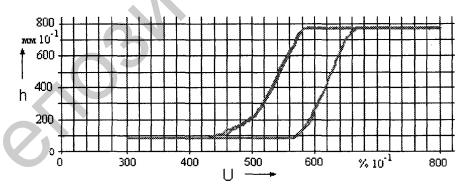
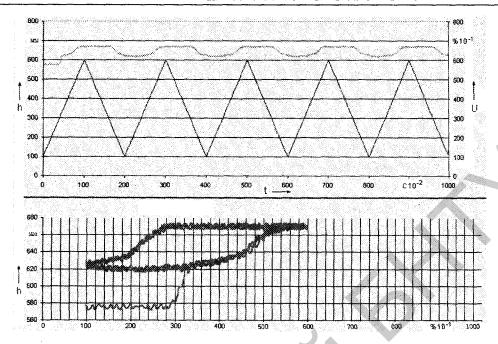
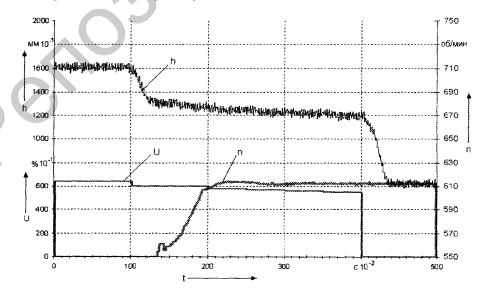
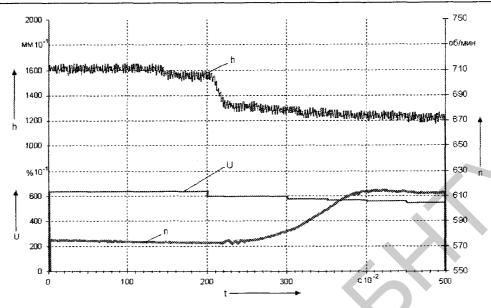



Рис. 2. Работа ИМ управления топливоподачей в зоне регулирования: U – управляющий сигнал ШИМ, $\% \cdot 10^{-1}$; h – ход рычага ТНВД, мм $\cdot 10^{-1}$; n – частота вращения коленчатого вала двигателя; t – время, $c \cdot 10^{-2}$

Рис. 3. Гистерезис ИМ управления двигателем: U— управляющий сигнал ШИМ, $\% \cdot 10^{-1}$; h— ход рычага ТНВД, мм $\cdot 10^{-1}$


Рис. 4. Характеристика механизма управления сцеплением при частоте управляющего сигнала 100 Гц: U – управляющий сигнал ШИМ, $\% \cdot 10^{-1}$; h – ход рычага выключения сцепления, мм; t – время, $c \cdot 10^{-2}$

Как видно из представленных результатов, зона управления имеет значительный гистерезис и нелинейность, а рабочий диапазон управляющего сигнала составляет около 18–22 % ШИМ при частоте 100 Гц.

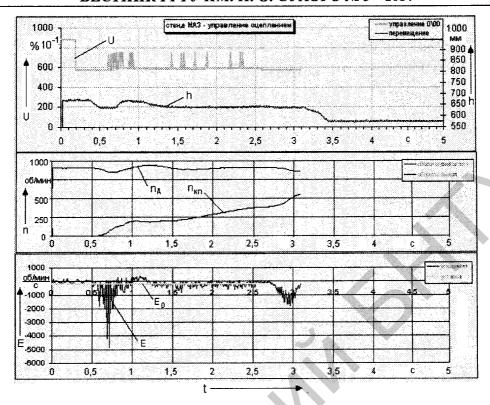
На рис. 5, 6 представлены результаты записи процесса, соответственно, при плавном и резком трогании на I-й передаче. В качестве выходного параметра для оценки эффективности работы сцепления брались обороты промежуточного вала [8, с. 46], которые, при отсутствии датчика момента на выходном валу, позволяли косвенным образом оценить работу сцепления.

Рис. 5. Осциллограмма процесса быстрого включения сцепления: U – управляющий сигнал ШИМ, $\% \cdot 10^{-1}$; h – ход рычага сцепления, мм $\cdot 10^{-1}$; t – время, с $\cdot 10^{-2}$; n – частота вращения промежуточного вала КП, об/мин

Puc~6. Осциллограмма процесса плавного трогания с места: U – управляющий сигнал ШИМ, $\% \cdot 10^{-1}$; h – ход рычага сцепления, мм $\cdot 10^{-1}$; t – время, с $\cdot 10^{-2}$; n – частота вращения промежуточного вала КП, об/мин

Однако ввиду узкого диапазона регулирования и значительного гистерезиса, обеспечить качественное управление плавностью включения сцепления в таких условиях довольно затруднительно. Для тонкого регулирования процессом включения сцепления необходимо иметь обратную связь. Поэтому в цепь управления был введен пропорционально-интегральный (ПИ) регулятор.

На стенде были проведены исследования и сравнительные испытания нескольких стратегий управления сцеплением с обратной связью по оборотам. Модуляция управляющего сигнала осуществлялась по формуле


$$U = \frac{K(Y_{3AJI} - Y_{TEK}) + U_{i-1}(1 + 2\tau) - U_{i-2}\tau}{1 + \tau},$$
 (1)

где U – коэффициент заполнения сигнала ШИМ; $У_{3ад}$, $У_{тек}$ – соответственно, уставка и текущее значение изменения угловых скоростей ведущего и ведомого дисков сцепления в единицу времени; K, τ – коэффициенты, влияющие на качество протекания переходных процессов.

Коэффициенты ПИ-регулятора [см. формулу (1)] подбирались таким образом, чтобы обеспечить плавность включения сцепления за относительно короткий интервал времени. Качество управления оценивалось по признакам устойчивости результатов при допустимых изменениях внешних условий — нагрузки, давления воздуха в контуре управления, бортового напряжения питания. Наиболее удачной оказалась стратегия управления, имеющая следующие особенности реализации:

- цифровой ПИ-регулятор с дискретностью управления 1/100 секунды с обратной связью по оборотам двигателя и промежуточного вала КП, содержащий 3 фазы регулирования с индивидуально настраиваемыми параметрами;
 - алгоритм компенсации гистерезиса ИМ;
- алгоритм фильтрации измеряемых параметров: оборотов вращения и вычисляемых ускорений.

Отдельные результаты эксперимента по управлению сцеплением с использованием стратегии DSAC приведены на рис. 7.

 $Puc.\ 7.\ Осциллограмма процесса трогания с ПИ-регулятором в цепи управления: <math>U$ – управляющий сигнал ШИМ; h – ход рычага сцепления; t – время; $n_{\rm g},\ n_{\rm kn}$ – частота вращения, соответственно, коленвала ДВС и промежуточного вала КП; $E,\ E_0$ – производная разности угловых скоростей ведущей и ведомой частей сцепления и ее пороговое значение

Предлагаемая стратегия управления сцеплением позволяет учесть нелинейность и гистерезис характеристики ИМ сцепления, а ввод обратной связи по оборотам промежуточного вала дает возможность отслеживать характер нарастания момента трения сцепления при включении фрикционного узла.

Как видно из представленной осциллограммы (рис. 7), при превышении порогового значения в 21 рад/ c^2 по ускорению ведомого диска, электронный блок управления (ЭБУ) формировал сигнал на выключение сцепления, что вело к перестройке структуры алгоритма и последующему согласованию кинематических и силовых факторов ведомой и ведущей частей сцепления. Средний темп включения сцепления в процессе трогания составил 1,15 c^{-1} , что соответствует, согласно результатам моделирования [9, с. 101, табл. 2], удельным работе и мощности буксования фрикционных элементов в 22,3 Вт/см 2 и 10,1 Дж/см 2 , коэффициенту динамических нагрузок в 1,58 и максимальному размаху колебаний производной продольного ускорения автомобиля в 38.5 м/ c^3 .

Заключение

- 1. Спроектированная мехатронная система управления силовым агрегатом автопоезда на базе сухого фрикционного сцепления и механической КП полностью работоспособна, что подтверждается результатами полунатурного эксперимента по троганию с места в автоматическом режиме.
- 2. Для обеспечения качественного протекания процесса трогания автопоезда с места включение сцепления необходимо производить при среднем темпе нарастания момента трения $k_{\rm cq} = 1,15$ с⁻¹, что возможно при наличии в цепи управления обрат-

ной связи по оборотам промежуточного или выходного вала. При таких параметрах алгоритма весь процесс трогания с места в автоматическом режиме работы силового агрегата происходит за время $t_{\text{обш}} = 3,2$ с, причем время разгона ведомого диска до угловой скорости двигателя составляет 2,6 с, что соответствует удельным работе и мощности буксования фрикционных элементов, равной 22,3 BT/cm^2 и 10,1 $Дж/cm^2$, коэффициенту динамических нагрузок в 1,58 и максимальному размаху колебаний производной продольного ускорения автомобиля в 38,5 м/с³.

- 3. С целью увеличения быстродействия мехатронной системы на переходных режимах движения в алгоритм управления целесообразно вводить фрагмент компенсации гистерезиса ИМ дизельного двигателя и фрикционного сцепления, что положительно скажется на эксплуатационных свойствах АТС.
- 4. Оптимальная частота генерируемого сигнала с широтно-импульсной модуляцией для спроектированной мехатронной системы управления топливоподачей ДВС и фрикционного сцепления составляет 100 Гц и обеспечивает, при имеющихся геометрических параметрах ИМ и характеристиках электронных компонентов привода, диапазон управления ИМ в пределах 18–22 % ШИМ.

Литература

- 1. ZF AS Tronic® / ZF tech. information, Sheet-No. 1327 750 102a. ZF Fridrichshafen AG, Germany, 2001. 23 p.
- 2. Механизм автоматизированного переключения передач в механической ступенчатой коробке передач : пат. 2192973 С2 Российская Федерация, МПК 7 В60К20/00, МПК 7 В60К20/02 / Р. М. Фадеев ; заявитель ОАО «КамАЗ». № 2001104251/28 ; заявл. 13.02.01 ; опубл. 20.11.02. 6 с.
- 3. Method of controlling an automated mechanical transmission shift mechanism: pat. 5325029 USA, int. Cl. B60K 17/12 / D. P. Janecke, L. A. Kominek, S. A. Edelen; assignee Eaton Corporation. № 985190; filed 11.30.92; date of patent 28.06.94. 14 p.
- 4. ZF AS Tronic и ZF AS Tronic mid: техническое руководство по установке, работе и вводу в эксплуатацию / ZF tech. information, Sheet-No. 1328 765 901f21. ZF Fridrichshafen AG, Germany, 2005. 105 р.
- 5. Fuller®Automated Transmissions: Fuller®UltraShift® LST -LHP, -LEP / Eaton tech. information: condensed specifications TRSL-0300, -0318 807 2.5M/WP, TRSL 0314 807 2M/WP. Eaton Corporation, USA, 2007. 6 p.
- 6. Lee, H.-W. A study on full electronic control of automatic transmission: direct active shift control / H.-W. Lee, J.-S. Oh, G.-H. Jung: Hyundai Motor Company// F2000A101: materials of FISITA World Automotive Congress Seoul, Korea, 2000. P. 1–6.
- 7. Конструкции автомобилей. Антиблокировочные и противобуксовочные системы : зарубежный опыт // ЦНИИТЭИавтопром. М., 1989. 79 с.
- 8. Красневский, Л. Г. Управление фрикционным сцеплением на основе шим-сигнала с однопараметрической обратной связью / Л. Г. Красневский [и др.] // Перспективные приводные системы, трансмиссии и робототехнические комплексы : материалы Междунар. науч.-техн. конф., Могилев, 20–21 окт. 2011 г. / Белорус.-Рос. ун-т. Могилев, 2011. С. 44–47.
- 9. Руктешель, О. С. Определение пороговых значений параметра обратной связи при широтно-импульсном управлении сцеплением / О. С. Руктешель [и др.] // Вестн. Восточноукр. нац. ун-та им. В. Даля. 2010. № 6 (148). С. 97–101.