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Summary 
 
In this paper the bilateral estimators of power variable thickness along the radius in diaphragm form 
where analyzed in a theoretical approach. The approximate solution of boundary problem of transversal 
vibration of plates with variable rigidity has been applied for chosen values of power indicator of vari-
able thickness and material Poisson's ratio. The combinations of varying thickness and Poisson’s ratio 
has been chosen which led to exact form solutions [2, 3] Particular attention has been given to a singular-
ity arising from the uncertainty of estimates of Berstein-Kieropian. The method developed in this paper 
allows has allowed obtaining the influence Cauchy function for arbitrary values of m and ,  which are 
physically justified. Therefore, the aim of a paper was to explore why for a plate above a certain value 
exact solution do not exist and FEM solution gives large discrepancies. 
 

1. Introduction 
 

In a previous paper [15] authors analyzed the use of simplest lower estimator to calculate the basic 
frequency of axi-symmetrical vibration of plates with variable thickness circular diaphragm type. The 
existence of the simplest estimator of the actual value of the parameter depending on the frequency 
rate of change characterized by thick plate (m = 3.25 to 5,999) was analyzed. The accuracy of the 
method differed from the FEM and in order to improve the accuracy of the estimators it was decided 
to use a higher order, in this case double. Using the bilateral estimator the similar problem arose in the 
calculation of exact solution in a paper by Conway [3]. It seems that the problem lies in the fact that 
diaphragms for meters which is close to 4 in the center of symmetry have a very low rigidity and on a 
boundary value it creates a hole in the middle with a radius of 1mm to 23mm. As a common known 
plate with a hole required 2 additional boundary conditions on the edge of the hole, the hole is a singu-
larity which requires detailed analysis. It is widely known that clarification of the model leads to the 
complexity of solutions. The compromise between the possibilities of addressing coastal vibration and 
stability of mechanical systems and simplifying gives the total allowable use of methods of the influ-
ence functions, and partial discretization characteristic series. Good results achieved in previous publi-
cations [15], which included linear modeling of mechanical systems with discrete-continuous parame-
ters encouraged authors to use the above-mentioned methods for studying vibration plates diaphragm 
type of ring. In this case, the influence of the function, which is the product of the Cauchy and Heavis-
ide unit functions were applied. This function features the influence of derivatives, which are funda-
mental solutions of linear differential equations and can build their base of the integrated general solu-
tions with various types of δ ratios in the Dirac. For the vibration test plate with varying parameters 
method of partial discretization has been used. It is based on the method of influence and has been 
previously proposed by L. Zoryj and J. Jaroszewicz to analyze vibration plates fixed and variable 
thickness with an additional mass focused [13]. The record for continuous or continuous-discrete mass 
distribution systems discrete can be replaced with one, two and n-degrees of freedom, which are char-
acterized by the same function of stiffness. The plate’s mass focuses on the rings with a certain radius. 



Total weight of the replacement system is equal to its own weight plates. This procedure uses a uni-
versal characteristic of the equation. 
 

2. Formulation of the problem 
 
R-radius circular plate having a clamped edge which cross section presented on Fig.1 has been consid-
ered. 

 
 

   

 
 
 
 

Figure 1: Cross section of the plate of diaphragm type 
 

Table 1: Variable thickness plates 
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Its thickness h and flexural rigidity D change in the following way (table 1):  
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where 0,, 00 mhD - are the constants, r- denotes the radial coordinate, E - a Young's modulus, and 

 - denotes Poisson's ratio. 
 
Investigation of free, axi-symmetrical vibrations of such a plate is reduced to an analysis of the bound-
ary problem [2, 5, 11] 
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 u = u(r) denotes the amplitude of flexural vibrations,  - density of the material of the plate,  - the 
parameter of frequency /angular velocity/. Boundary value conditions corresponding to a clamped 
edge (2.3) has been defined as zero values of deflection and zero values of the angle of deflection for 
r=R. Additional conditions pertaining to the centre of symmetry of a plate (r=0) have limited values of 
deflection u(0) < and zero values of the angle of deflection u’(0)=0. The value m = 0 refers to a plate 
with constant thickness; m > 0 - to plates of the diaphragm type with thickness decreasing toward the 
axial center ; m < 0 – to disc type plates with thickness increasing toward the axial center [5, 11]. The 
border of variation of the power index 0m  has been determined, for which the most simple estima-
tors of the basic frequency 1  exist and therefore can be calculated. i.e. it has been search for the low-

est proper value of the border problem (2.2)  (2.3). In the problem (2.2)  (2.3), a limitation of solu-
tions for r going to 0 and their first up to the third derivatives, with respect to the independent variable 
r is required [2]. 
 
General form of Cauchy function was proposed by L.M. Zoryj and J. Jaroszewicz in older works. 
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where:  4321 ,,, ssss  - routs of characteristic equation, D – determinant of square equation 
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Equation (2.6) received from characteristic equation 
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which roots present in next form: 
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So, for Lo[u] = 0 the fundamental system of solutions, in those cases is (according to Euler’s theory of 
equations) as follows: 
m = 0 

rrrr ln,,ln,1 22 ; 
m = 2                                                                                                                                    (2.10) 
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Based on those calculations, the following remarks can be formulated: 
 
1. All roots of the cubic equation (2.8), as well as those of the quadratic equation (2.6) are real num-
bers for any given physically justified values of m - power indexes and values of Poisson’s ratio   
( )5,0;0( ). 
 
2. The equation (2.6) has no other multiple (repetitive) roots for ),( m  and )5,0;0( . 



 
3. The fundamental systems of solutions for Euler’s differential equations Lo[u] = 0 posses logarithmic 
peculiarities only in cases m = 0, m = 2 and are determined by the formulas (2.10); in all of the rest 
cases they have power character peculiarities. 
 

3. Derivation of the frequency equation in particular case 
m
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The necessary limited solution of equation (2.2) will be derived according to the known formula [11, 
15], 
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k = 1, 2, ...; S10, S20 – the proper solutions (limited for r = 0) of Euler`s equation L0[u] = 0. Therefore 
K(r, τ) – its Cauchy function, is the solution of the equation L0[u] = 0, which satisfies the conditions: 
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In order to build the above mentioned function K(r, τ), the solutions to the given equation, which cor-
respond to the operator (2.4) is necessary. Substituting u = rs for p = 0 in (2.2), an appropriate alge-
braic equation in respect to the parameter s [5] has been obtained: 
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The roots of this equation and the corresponding Cauchy function were previously determined for a 
few values of m where m ≤ 3 [2]. For that reason in a current paper the following case has been exam-
ined: 
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The parameter m is this same which is used in the operator (2.4). In the case of a constant thickness 
plate m = 0, the coefficient of natural frequency (m), described by the formula (4.3), is not dependent 
on , what was showed in the following papers: [2,5,11]. 
 
Obviously, for the operator (2.4) the coefficient of u  equals zero and the roots of the equation (3.4) 
are as follows: 
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where s3 and s4  are determined from the square equation, which was obtained from (3.4)  
for s1 = 0 and s2 = 1). 
 
Hence, the corresponding fundamental system (3.6) of solutions of equation L0[u] = 0 takes the fol-
lowing form: 
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An application of the above system leads to the formula:  
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Now the solutions can be constructed (3.1). After calculating the first two integrals of (3.2) (for j = 1, 
2 and k = 1) the following relations have been obtained: 
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After taking into consideration the formulas for u3 and u4 for the conditions (3.9), a conclusion can be 
drawn that the limited solutions of equation (2.2) are determined by the formula: 
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where C1 and C2 – are arbitrary constants. After inserting this solution into the condition (3.5), the 
homogenous system of two algebraic equations for the constants C1 and C2, has been obtained where 
its determinant is the left part of the frequency problem (2.2) – (2.3). Therefore: 
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Considering the formulas (3.9) – (3.11) the first approximation (accurate to p, hence to the square of 
frequency) has been gained, which takes the following form: 
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Taking into consideration the equation:  
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Neglecting second terms of series a2 it can be transformed (3.16) to the following form: 
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Remarks:  

For m = 3, ν = ⅓ we have obtained 1
1 )24( A , 1

2 )36024( A , 1
1 )120( B , 

1
2 )840120( B  [11]. 

Formulas (3.10), (3.11) are in accordance with the values quoted in the above remarks.  



Obviously first of solution (3.9) and second derivative of solutions (3.9) for 0a    6m   are in-

dependent of r, in this case coefficients (3.10) – (3.11) lose sense for 6m ,  1B , 2B . 

Besides 1A  for 5,4m   1a  and 2A  for 25,5m    5,0a  
 
For cases (3.5) using (3.10) and (3.11) we transform (3.17) to the following form: 
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4. The bilateral estimators for basic frequency in particular case 
m
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Take into account the series (3.15) known Bernstein estimators with the following form [1] can be ap-
plied. 
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Coefficients of the series 1a , 2a  dependent on m  can be constructed on the basis of (3.15). Coeffi-

cient 1a  scrutinized in previous work, where exact formula has been constructed. 
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To develop formula (3.16) for 2a  in a similar form formula in following form should be 
present. 
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Second addition in expression (3.16) can be present in form 
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Take into account identity 

(4.7)
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The first component sum (5.7) in form has been found 
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Considering also identity 
 

(4.8)

               mmmmccba 


 2421215122

81

21212

1
 (4.9)

 
Finally from (5.7) general form second coefficients of characteristic series 2a has been recived 
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Example results of calculation for changed cases 62  m  and m

1

 obtain on the basis of  

 
formulas (5.1), (5.2) and (5.10) present on the table 2,3. and on fig. 1. 
 
Where mean arithmetic value of basic frequency coefficient for m = 3, ν = ⅓ is: 
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the basic frequency can be found 
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5. Discuses of results of calculations 

 
Results of calculations where compared with previous paper [15] in table 2 and fig 2 which were cal-
culated by means Cauchy function and characteristic series method using simplest estimator and exact 
solution recived on base Bessel special function by Conway, Hondkiewic, Kovalenko. 



Table 2: Results of calculation of base frequency 
 

 
 

Figure 2: The curve showing influence of the plate thickness index 
on the bilateral estimators of the frequency coefficients 

 
Boundary values, for which the upper estimator does not exist can be settled on the basis of  the inves-

tigation of under roots expression form change (5.1) )4( 2
2
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form positive to negative with 98,3m  so calculating accurate values  1a  and  

   2a  on the base of  base (5.10) we have respectively: 
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No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 
Coefficient m 2 2,5 3 3,7 3,9755 4,4999 5 5,5 5,9999 
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  8,38 8,56 8,65 8,62 8,55 8,27 7,75 6,73 0,83 

  8,45 8,66 8,84 9,19 10,16 - - - - 
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sides estima-
tor 

0  8,42 8,61 8,75 8,91 9,36 - - - - 
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Under estimated values there for it can not be even used in approximate application however the sim-
plest lower estimator can be applied to preliminary engineering calculations for constant and for vari-
able thickness plates when  40  m . 

 
Table 3: The base frequency of the plate with nonlinearly variable thickness 

  mmrh 01,00   [15] 
 

№ Material   Coefficient 
m 

D0 
[Nm] 

Masses 
[kg] 

 

Average 
of bilat-
eral esti-

mator 

0  

Frequency 
of the bilat-
eral estima-

tor 
f[Hz] 

Frequency 
in the FEM 

analysis 
f[Hz] 

Difference 

  
% 

1. titanium 0,36 2,78 9778 6,093 8,697682 322,09 Hz 330,19 Hz 2,45 
2. steel 0,27 3,7 18560 9,834 8,90738 340,23 Hz 347,15 Hz 1,95 
3. zinc 0,25 4,0 10531 8,410 9,356813 286,75 Hz 267,35 Hz -7,26 
4. concrete 0,17 5,9 1716 1,983 unknown unknown 211,76 Hz unknown 

 
It should be noticed that in the case of a constant thickness plate )0( m , the multiplier 
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It does agree with results of calculations obtained by Conway in [2] and presented in introduction to 
this paper (T/T0 =1,17). Continuing, in analogical fashion the basic frequency for other combinations 
of m and has been calculated. The results of calculations are presented below in table 4  
 
In table 4 are presented values revived by Jaroszewicz J. Zoryj L. cases for witch Conway derive char-

acteristic function on base special Bessel function. Ratio 

 0  of natural frequency plate co constants 

thickness and plate of variable thickness for Conway values m ,  . This table contain model value of 
solution with we compare approximate results.  
 

Table 4: The results of calculations [11] 
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In table 4 Conwey could not apply the exact method [2], because the condition: 
9

32 
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m  was not 

fulfilled. 
 
 
 



6. Conclusions 
 

On the basis of Figure 3 it can be seen that the simplest estimator Yp gets underestimates results the 
value with the increase of the coefficient m, the error increases in relation to the value of science, and 
FEM results obtained in previous work. In contrast to double  estimate its give accurate results, this 
follows from the analysis of the value of the denominator of the estimator Y +, the value calculation is 
consistent with the exact solution for m = 3, is 8.75 the same is true for m = 2 (8.40) im = 2 , 5 (8.60). 
Deriving of the above mentioned formulas for the Cauchy functions, as well as fundamental systems 
of function operator Lo[u] allows to study of the convergence problem (velocity of convergence) of 
solutions of equation (2.4) in form of power series in respect to parameters of frequencies, depending 
on values of parameters m and .  
 
Having the influence functions of operator  Lo[u] corresponding solutions and use them for any given 
physically justified values of  parameters m and  ( ),( m ; )5,0;0( ) can be consequently 
determined, when the exact solutions are unknown on base general form of Cauchy function (2.5). On 
the basis of quoted solutions, simple engineering formulas for frequencies estimators of circular plates, 
which are characterized by variable parameters distribution, can be derived and limits of their applica-
tion can be identified. The bilateral estimators calculated using four first elements of the series, allows 
to credibly observe an influence material’s constants: Young modulus-  E, Poisson ratio- , density -
 on the frequencies on axi-symmetrical vibrations of circular plates, which thickness or rigidity 
changes along the radius according to the power function. 
 
The bilateral estimator underrate values, application of bilateral estimator significantly improves the 
accuracy of calculations terms of exacts solutions. 
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