Таким образом, отход производства синтетических алмазов может использоваться для легирования серого чугуна. Данный отход можно рекомендовать для применения в литейном производстве в качестве добавки к брикетам из чугунной стружки при плавки в вагранке.

Ведутся дальнейшие работы по определению оптимальных параметров легирующей добавки, снижению содержанию в отходе нежелательных примесей F, Cl, S, а так же повышению степени извлечения Mn.

УДК 621.7

Исследование свойств диффузионных слоёв на стали 45 в системе «углерод-хром» с использованием легкоплавких добавок.

Стефанович В.А., Борисов С.В., Стефанович А.В. Белорусский национальный технический университет

Целью настоящей работы является получение диффузионных слоев высокой твердости и значительной толщины в системе «хром-углерод» с дополнительным введением в смесь легкоплавких добавок, а также других карбидообразующих элементов. В качестве добавок применяли Cu, Zn, Sb, $SnCl_2*2H_2O$, CoO, MoO_3 .

Насыщение проводили при температуре 1050°C в течение 4ч. в металлических тиглях с плавким затвором.

Для получения оптимальных слоев был применен последовательный симплекс метод (ПСМ) планирования эксперимента с использованием правильного симплекса.

Значение характеристик диффузионных слоёв, полученных на основном уровне (образец 1) и лучших образцов в матрице (образец 14 и 15) представлены в таблице 1.

Таблица 1—Результаты проведенных опытов

тиолици т тезультиты проведенных опытов					
Номер	Балл зерна	Толщина	Балл	Твердость	Твердость
опыта	после	слоя,	твердых	после	после
	насыщения	MKM	включений	закалки	отпуска
				HRC	400°C
1	6	350	1	61	46
14	8	1750	3	69	50
15	7	1400	3	68	50

В результате оптимизации диффузионные слои на основе углерода полученные на стали 45 формируются в 4..5 раз быстрее, после закалки имеют большую твердость (68..69 HRC). Структура диффузионных слоев состоит из мелкозернистого мартенсита (балл N28) и аустенита остаточного со значительным количеством твердых включений.