ДИНАМИЧЕСКАЯ ХАРАКТЕРИСТИКА АСИНХРОННОГО ДВИГАТЕЛЯ ПРИВОДА КОЛЕС ШАХТНОГО САМОХОДНОГО ВАГОНА

Белорусский национальный технический университет Факультет горного дела и инженерной экологии

Матусович Э.В., гр. 102820, Загоровский Ю.В., гр. 102810 Научные руководители – ст.пр. Басалай Г.А., к.т.н., доц. Таяновский Г.А.

Приводы колес (Рис.1) шахтного самоходного вагона значительную часть времени работают в режиме разгона-торможения. Эффективность эксплуатации машины в значительной степени зависит от механической характеристики двигателей приводов колес левого и правого бортов.

Рисунок 1 – Привод колес шахтного самоходного вагона ВС-17

Механическая характеристика асинхронного двигателя выражает зависимость между электромагнитным моментом и частотой вращения, либо скольжением. Скольжение — это величина, которая показывает, насколько частота вращения магнитного поля опережает частоту вращения ротора.

Благодаря механической характеристике, появляется возможность определить к какому типу установки больше подходит двигатель, на каком участке сохраняется его устойчивая работа, перегрузочную способность и другое.

Построим механическую характеристику для двигателя АВТ15-4/6/12 в соответствии с его основными данными (Таблица).

Таблица - Паспортные данные двигателя АВТ15-4/6/12

Tuosinga Tiachop Tible gainible gbin aresin 115 17 0/12					
Число	Мощность но-	Частота вра-	Скольжение	Кратность мак-	
полюсов	минальная, кВт	щения син-	номинальное	симального мо-	
		хронная		мента	
		об/мин			
4	22	1500	0,08	2,8	
6	46	1000	0,14	2,8	

12 23	500	0,13	3,6
-------	-----	------	-----

Для построения характеристики определим номинальный момент двигателя.

$$M_{\scriptscriptstyle H} = 9550 \frac{P_{\scriptscriptstyle H}}{n_{\scriptscriptstyle H}}, \, \text{H·M} \tag{1}$$

где P_{H} - мощность номинальная, кВт;

 $n_{_{\! H}}$ - частота вращения номинальная, об/мин.

$$n_{H} = n_{0} \cdot (1 - S_{H}), \qquad (2)$$

где n_0 - частота вращения синхронная, об/мин;

 S_{H} - скольжение номинальное.

Определим номинальную частоту вращения для включенных обмоток ротора:

- для четырех полюсов $n_{H(4)} = 1500(1-0.08) = 1380$, об/мин;

- для шести полюсов $n_{H(6)} = 1000(1-0.14) = 860$, об/мин;

- для двенадцати полюсов $n_{{\scriptscriptstyle H}(12)} = 500 \big(1-0.13\big) = 435$, об/мин.

Определим номинальный момент для трех характерных режимов, при различном количестве включенных обмоток ротора:

$$M_{H(4)} = 9550 \frac{22}{1380} = 152,25 \text{ H·m};$$

$$M_{H(6)} = 9550 \frac{46}{860} = 510,81 \text{ H·m};$$

$$M_{H(12)} = 9550 \frac{23}{435} = 504,94 \text{ H·m.}$$

Рассчитаем критическое скольжение по формуле

$$S_{\kappa\rho} = S_{\mu}(\lambda + \sqrt{\lambda^2 - 1}), \qquad (3)$$

где λ - кратность максимального момента (перегрузочная способность).

Определим критическое скольжение для трех режимов включенных обмоток ротора:

$$S_{\kappa p(4)} = 0.08(2.8 + \sqrt{2.8^2 - 1}) = 0.4332;$$

$$S_{\kappa\rho(6)} = 0.14(2.8 + \sqrt{2.8^2 - 1}) = 0.7581;$$

$$S_{KD(12)} = 0.13(3.6 + \sqrt{3.6^2 - 1}) = 0.9176.$$

Рассчитаем критический момент по формуле

$$M_{KD} = \lambda \cdot M_H$$
, H·M.....(4)

для трех режимов включенных обмоток ротора

$$M_{\kappa n(4)} = 2.8 \cdot 152,25 = 426,3 \text{ H·m};$$

$$M_{\kappa\rho(6)} = 2.8 \cdot 510.81 = 1430.27 \text{ H·m};$$

$$M_{\kappa\rho(12)} = 3.6 \cdot 504.94 = 1817.78 \text{ H} \cdot \text{M}.$$

Таким образом, определены основные точки характеристики, однако для её построения их недостаточно. Поэтому с помощью упрощенной формулы Клосса, рассчитаем моменты для других значений скольжений.

Упрощенная формула Клосса выглядит следующим образом:

$$M = \frac{2M_{\kappa p}}{S/S_{\kappa p} + S_{\kappa p}/S}, \text{ H·m.}$$
 (5)

Рассчитаем для каждого значения скольжения момент и частоту вращения. Например, для включенной четырехполюсной обмотки ротора для значения скольжения 0.2:

$$M = \frac{2 \cdot 426,3}{0,2/0,4332+0,4332/0,2} = 324,46 \text{ H} \cdot \text{m}.$$

Частоту вращения выразим из формулы для определения скольжения

$$n = n_0 \cdot (1 - S) = 1500(1 - 0.2) = 1200$$
 об/мин.

Подобным образом рассчитываются остальные значения.

На основании расчетов построена следующая механическая характеристика двигателя ABT15-4/6/12 (Рис. 2). Она является основой для построения динамической характеристики разгона самоходного вагона в холостом режиме и загруженном состоянии.

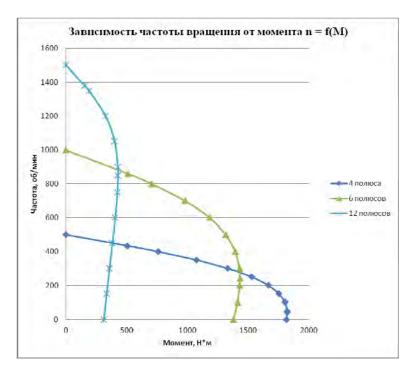


Рисунок 2. - Механическая характеристика асинхронного двигателя ABT15-4/6/12 при различном количестве включенных обмоток ротора

Список использованных источников:

1. Москаленко В. В. Электрический привод: учебник для студ. ВУЗов. - М.: Издательский центр «Академия», 2007. - 368 с.

2. Мощинский Ю. А., Беспалов В. Я., Кирякин А. А. Определение параметров схемы замещения асинхронной машины по каталожным данным // Электричество. - №4/98. - 1998. - С. 38-42.