НАУЧНО-ТЕХНИЧЕСКИЙ СЕМИНАР

ВОПРОСЫ ПЕРЕХОДА НА ЕВРОПЕЙСКИЕ НОРМЫ ПРОЕКТИРОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ

(г. Минск, СФ БНТУ — 30.11.2010)

УДК 624.012.45

НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ ЕВРОКОД 5

> НАЙЧУК А.Я. Филиал РУП «Институт БелНИИС» НТЦ Брест, Беларусь

ОСНОВНЫЕ ДОКУМЕНТЫ ПО ПРОЕКТИРОВАНИЮ ДК

- Проектировать деревянные конструкции и гражданские сооружения на территории Республики Беларусь следует в соотвествии с общепринятыми в Европейском Союзе стандартами, с учетом национальных приложений.
- Основополагающими документами при проектировании деревянных конструкций и гражданских сооружения являются: ТКП EN 1990-2009 «Основы проектирования конструкций» - определяющий основы строительного проектирования; ТКП EN 1991-1-2009, Еврокод 1 «Воздействия на конструкции», включающий десять рассматривающих воздействия, которые необходимо воспринять; ТКП EN 1995-2009, Еврокод 5 «Проектирование деревянных конструкций», который состоит из трех частей: ТКП EN 1995-1-1 Проектирование деревянных конструкций - Часть 1-1: Общие правила и правила для зданий; ТКП EN 1995-1-2 Проектирование деревянных конструкций -Часть 1-2: Общие положения – Проектирование с учетом огнестойкости и ТКП EN 1995-2 Проектирование деревянных конструкций – Часть 2: Мосты.

ВОЗДЕЙСТВИЯ И ВЛИЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

Длительность действия нагрузки и влияние влажности на прочностные и жесткостные характеристики элементов из древесины и материалов на ее основе следует обязательно учитывать в расчетах на прочность и пригодность к эксплуатации. Следует также учитывать воздействия, вызванные изменением влажности древесины.

Классы длительности действия нагрузок

Nº	Класс воздействия нагрузки	Совокупная длительность воздействия нормативной нагрузки
1	Постоянные	Более чем 10 лет
2	Длительные	6 месяцев – 10 лет
3	Средней продолжительности	от 1 недели до 6 месяцев
4	Кратковременные	менее чем 1 неделя
5	Особые (мгновенные)	


Nº	Класс воздействия нагрузки	Примеры нагрузок
1	Постоянная	Собственный вес
2	Длительная	Складирование и накопление материалов
3	Средней продолжительности	Нагрузка на перекрытие, снеговые нагрузки
4	Кратковременная	Нагрузки при техническом обслуживании
4	Особая	Ветер и особые нагрузки

Классы эксплуатации

Сооружения подразделяются по одному из классов эксплуатации, приведенных ниже.

Классы эксплуатаций	Характеристика условий эксплуатации конструкций	Максимальная влажн для констр	
		из клееной древесины	из цельной
	Внутри отапливаемых помещений при температуре 35 град C, относительной влажности воздуха, $\%$:		
1 2	до 60 включительно	9 12	20 20
3	св. 60 до 75 75 — 95	15	20
2 3	Внутри неотапливаемых помещений при относительной влажности воздуха, %: до 75 включительно свыше 75	12 15	20 25
4	На открытом воздухе	12	25
4	В частях зданий и сооружений, соприкасающихся с грунтом	-	25
5	Постоянно увлажняемых, находящихся в воде	-	Не ограничивается

Применение клееных деревянных конструкций в условиях эксплуатации класса 1 при относительной влажности воздуха ниже 45% не допускается.

					Др			ых пор								ина ли			
		C14	C16	C18	C20	C22	C24	C27	C30	C35	C40	C45	C50	D30	D35	D40	D50	D60	D7
Показатели про	чности																		
Изгиб	f_{mk}	14	16	18	20	22	24	27	30	35	40	45	50	30	35	40	50	60	70
Растяжение вдоль волок.	$f_{t,0,k}$	8	10	11	12	13	14	16	18	21	24	27	30	18	21	24	30	36	42
Растяжение поперек волок.	f _{t,90,k}	0,4	0,5	0,5	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,9
Сжатие вдоль волок.	$f_{c,0,k}$	16	17	18	19	20	21	22	23	25	26	27	29	23	25	26	29	32	34
Сжатие поперек волок.	f _{c,90,k}	2,0	2,2	2,2	2,3	2,4	2,5	2,6	2,7	2,8	2,9	3,1	3,2	8,0	8,4	8,8	9,7	10,5	13,5
Сдвиг	f_{vk}	1,7	1,8	2.0	2,2	2,4	2,5	2,8	3,0	3,4	3,8	3,8	3,8	3,0	3,4	3,8	4,6	5,3	6,0
Показатели жес		(кН/мм																	
Среднее значение модуля упругости вдоль волок.	$E_{0,\mathrm{mean}}$	7	8	9	9,5	10	11	11,	12	13	14	15	16	10	10	11	14	17	20
5%-ная квантиль модуля упругости вдоль волок.	$E_{0,0,5}$	4,7	5,4	6,0	6,4	6,7	7,4	8,0	8,0	8,7	9,4	10,0	10,7	8,0	8,7	9,4	11,8	14,3	16,
Среднее значение модуля упругости поперек волок.	E _{90,mea}	0,23	0,27	0,30	0,32	0,33	0,37	0,38	0,40	0,43	0,47	0,50	0,53	0,64	0,69	0,75	0,93	1,13	1,3
Среднее значение модуля сдвига	G_{mean}	0,44	0,50	0,56	0,59	0,63	0,69	0,72	0,75	0,81	0,88	0,94	1,00	0,60	0,65	0,70	0,88	1,06	1,2
Плотность (кт/м	³)																		
Плотность	ρ_{ν}	290	310	320	330	340	350	370	380	400	420	440	460	530	560	590	650	700	900
Среднее значение плотности	ρ_{mean}	350	370	380	390	410	420	450	460	480	500	520	550	640	670	700	780	840	108

Формулы для определения нормативных значений древесины в соответствии с СТБ EN 338. Для определения указанных в таблице нормативных значений, кроме прочности при изгибе, среднего значения модуля упругости при изгибе и плотности применяют следующие формулы: Прочность при растяжении вдоль волокон $f_{t,0,k} = 0.6f_{m,k}$ $f_{c,0,k} = 5(f_{m,k})^{0,45}$ Прочность при сжатии вдоль волокон [3,8 Прочность при сдвиге $[0,2(f_{m,k})^{0.8}]$ $f_{r,90,k} = \min \begin{cases} 0.00 \\ 0.0015 \end{cases}$ Прочность при растяжении поперек волокон Прочность при сжатии поперек волокон: $f_{c,90,k} = 0,007\rho_c$ для хвойных пород древесины для лиственных пород древесины $f_{c.90 k} = 0.015 \rho_k$ Модуль упругости вдоль волокон: для хвойных пород древесины $E_{0.05} = 0.67 E_0$ $E_{0.05} = 0.84 E_0$ для лиственных пород древесины Среднее значение модуля упругости поперек волокон: $E_{90,\text{mean}} = E_{0,\text{mean}}/30$ для хвойных пород древесины для лиственных пород древесины $E_{90,\text{mean}} = E_{0,\text{mean}}/15$ Среднее значение модуля сдвига

Характеристические значения прочностных и упругих характеристик клееной древесины

Характеристические свойства прочности, жесткости в Н/мм² и плотности в кг/м³ в соответствии с СТБ EN1194 (для однородной клееной древесины)

Класс прочности клееной древесины $f_{v,g,k}$	GL 244	GL 284	GL 32 ч	GL 36 ч
Прочность при изгибе $f_{m,g,k}$	24	28	32	36
Прочность при растяжении $f_{t,0,g,k}$	16,5	19,5	22,5	26
$f_{r,90,g,k}$	0,4	0,45	0,5	0,6
Прочность при сжатии $f_{c,0,g,k}$	24	26,5	29	31
$f_{c,90,g,k}$	2,7	3,0	3,3	3,6
Прочность при сдвиге $f_{v,g,k}$	2,7	3,2	3,8	4,3
Модуль упругости $E_{0,g,mean}$	11 600	12 600	13 700	14 700
$E_{0,g,05}$	9 400	10 200	11 100	11 900
$E_{90,g,mean}$	390	420	460	490
Модуль сдвига $G_{_{g,mean}}$	720	780	850	910
Плотность $ ho_{_{\mathcal{S},k}}$	380	410	430	450

Характеристические значения прочностных и упругих характеристик древесины

Характеристические свойства прочности, жесткости в Н/мм² и плотности в кг/м³ соответствии с СТБ EN 1194 (для комбинированной клееной древесины)

Класс прочности клееной древесины	GL 244	GL 284	GL 32 ч	GL 36 ч
Прочность при изгибе $f_{m,g,k}$	24	28	32	36
Прочность при растяжении $f_{r,0,g,k}$	14	16,5	19,5	22,5
$f_{t,90,g,k}$	0,35	0,4	0,45	0,5
Прочность при ежатии $f_{c,0,g,k}$	21	24	26,5	29
$f_{c,90,g,k}$	2,4	2,7	3,0	3,3
Прочность при сдвиге $f_{v,g,k}$	2,2	2,7	3,2	3,8
Модуль упругости $E_{0,g,mean}$	11 600	12 600	13 700	14 700
$E_{0,g,05}$	9 400	10 200	11 100	11 900
$E_{90,g,mean}$	320	390	420	460
Модуль сдвига $G_{g,mean}$	590	720	780	850
Плотность $ ho_{g,k}$	350	380	410	430

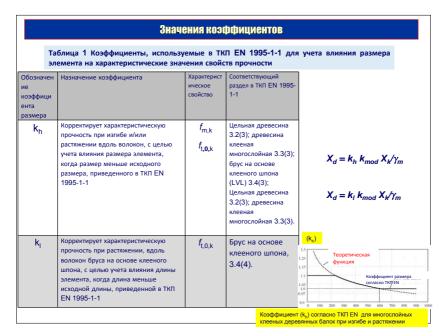
Примеры формирования пакетов древесины клееной слоистой

Примеры наслаиваний балок, свойства слоев

Классы прочности клееной древесины	GL 24	GL 28	GL 32	GL 36
Однородная клееная древесина:				
Прочность при растяжении, в Н/мм 2 $f_{t,0,g,k}$	14,5	18	22	26
Модуль упругости при растяжении, в Н/мм2				
$E_{0,g,mean}$	11 000	12 000	13 000	14 000
Плотность, в кг/м 3*) $\rho_{s,k}$	350	370	390	410
Комбинированная клееная древесина: **)				
Прочность при растяжении, в H/mm^2 $f_{r,0,g,k}$	14,5/11	18/14,5	22/18	26/22
Модуль упругости при растяжении, в Н/мм2				
$E_{0,g,mean}$	11 000/9 000	12 000/11 000	13 000/12 000	14 000/13 000
Плотность, в кг/м 3*) $\rho_{g,k}$	350/320	370/350	390/370	410/390
*) 2				

Примеры наслаиваний балок, классы прочности слоев в соответствии с СТБ EN 338

Классы прочности клееной древесины	GL 24	GL 28	GL 32
Однородная клееная древесина	C24	C30	C40
Комбинированная клееная древесина: внешние/внутренние слои	C24/C18	C30/C24	C40/C30


Значения частных коэффициентов свойств для древесины сосны и ели, γ_m

Напряженное состояние и характеристика элементов	K	лассы прочности	
	C28	C24	C16
1 Изгиб, сжатие и смятие вдоль волокон: a) элементы из пиломатериалов шириной сечения b≤0.13 м для элементов брусчатых и клееных; b) шириной b>0.13 м; c) из круглых лесоматериалов.	1,22 1,15 -	1,22 1,15 1,15	1,25 1,14 1,14
2 Растяжение вдоль волокон; а) элементы из цельной древесины; b) элементы из клееной древесины.	1,32 1,27	1,4 1,25	- -
3 Сжатие и смятие по всей площади поперек волокон	1,25	1,25	1,25
4 Смятие поперек волокон местное: а) в опорных частях конструкции, лобовых врубках и узловых примыканиях элементов; b) под шайбами при углах смятия от 90° до 60°.	1,25 1,25	1,25 1,25	1,25 1,25
5 Скалывание вдоль волокон: а) при изгибе неклееных элементов; b) при изгибе клееных элементов; c) в лобовых врубках для максимального напряжения	1,3 1,3 1,3	1,3 1,3 1,3	1,3 1,3 1,3
6 Скалывание поперек волокон	1,35	1,35	1,35
7 Растяжение поперек волокон	1,5	1,5	1,5
8 Растяжение под углом 45 ⁰ к направлению волокон	1,4	1,4	1,4
9 Срез под углом к волокнам 45° и 90°	1,4	1,4	1,4

^{**)} Требуемые свойства для комбинированной клееной древесины приведены для внешних/внутренних слоев

Значения коэффициентов модификации, k_{mod}

Материал	Стандарт	Класс		Класс	ы длителы	юсти дейсті	вия
		эксплуа- тации	Посто	Длит			Особое
			янное	ельно	снеговое	ветровое	
Цельная и клееная древесина, фанера	CTE 1711 - CTE 1714, CTE 1722, FOCT 1147, FOCT 3916.1, FOCT 3916.2, FOCT 11539	1 2 3 4 5	0,55 0,55 0,50 0,45 0,40	0,65 0,65 0,55 0,50 0,45	0,80 0,80 0,70 0,65 0,60	0,80 0,80 0,70 0,65 0,60	0,95 0,95 0,85 0,80 0,75
ДВПс	ТУ 13-444	1 2 3 4	0,45 0,30 0,25 0,15	0,50 0,35 0,30 0,20	0,55 0,40 0,35 0,23	0,65 0,45 0,40 0,25	0,80 0,55 0,45 0,30
ДСПк	ГОСТ 10632	1 2	0,45 0,25	0,50 0,30	0,55 0,35	0,65 0,40	0,80 0,45
ДСПф	ΓΟCT 10632	1 2 3	0,45 0,35 0,15	0,50 0,40 0,20	0,55 0,45 0,23	0,65 0,50 0,25	0,80 0,65 0,30
цсп	ΓΟCT 26816	1 2 3 4	0,50 0,45 0,35 0,30	0,60 0,55 0,40 0,35	0,65 0,60 0,45 0,40	0,75 0,65 0,50 0,45	0,90 0,80 0,65 0,55

	оначения	коэффициентов					
Таблица 2	Таблица 2 Значения $\emph{k}_{ m h}, \emph{k}_{ m h}, \emph{k}_{ m vol}$ и $\emph{k}_{ m dis}^*$						
Материал	Коэффициент	Определения/условия	Характеристическое значение				
Цельная древесина	При изгибе и растяжении: $k_{_{h}}=\min \Biggl\{ \left(\frac{150}{h} \right)^{\!0.2} \!$	Характеристическая плотность <700 кг/м³ (1)Изгиб: исходная высота h = 150 мм. (2) Растяжение: исходная ширина (максимальный размер поперечного сечения) h = 150 мм.	(1) Прочность при изгибе: = $k_h f_{mk}$ (2) Прочность при растяжении вдоль волокон: = $k_h f_{t,0,k}$				
Древесина клееная многослойная	При изгибе и растяжении, и распределении напряжения: $k_b = \min \left\{ \frac{600}{h} \right\} \min 1, 1 \right\}$ В верхней части балих двусатной, изопнутой и наклюнной криволичейной балок, все слои которой параллельны оси балоки: $k_{od} = \left(\frac{V_o}{h} \right)$ В верхней часть балок двусатной и изопнутой балок: $k_{da} = 1.4$	Для оценям K_n (1) изгиб: исходная высота h = 600 мм. (2) Растименти: исходная шерина (максимальный размер поперечного счения) h = 600 мм. (3) Растименти: исходная исходная $K_{\rm col}$ (3) Растименне: исходнай объем $V_{\rm c}$ = 0,01 м 3 . Объемом вероней части под напряжением (в π^3), как установено з ТИВ: 1096-11, рисков 6,3 макенти (сид рисупов 6.7). (применями: алжением V не должно превышать $2V_d/3$, где $V_{\rm a}$ = объем балки).	(1) Прочность при изгибе: = $k_{\rm M}f_{\rm R,k}$ (2) Прочность при растяжении адоль волокон: = $k_{\rm M}f_{\rm R,k}$ (3) Прочность при растяжении поперек волокон: = $k_{\rm M}s_{\rm M}f_{\rm R,0,0}$				
Брус на основе клееного шпона (LVL)	При изгибе в плосиости R_c распяжение и распределение напряжения: $k_k = \min\left\{\left(\frac{300}{h}\right)^k \ln \ln 1.2\right\}$ Для длины: $k_i = \min\{(3000l)^{p/2}$ или 1.1} В верхнёй части балии, друскатной, изогнутой и нахлонной Кировличейной балил, все слои	Для оценки k_n (1) экспоненту в влияния размера получают из СТБ ЕН 14374: $s = 2(c_1) - 0.25$, где c_n - коэффициент вариации результатов испытания. (2) Изгиб: иссоцияв высота $h = 300$ мм. Для оценки k_n (1) Растижениене: иссоцияв дляны $1 = 300$ 0 мм. k s	(1) Прочность при изгибе: = $k_n f_{m,k}$ (1) Прочность при растяжении вдоль волокна: = $k_n f_{m,k}$				
	навлияния приводительно сих бідлих которой парадлельны сох бідлих которой парадлельны сох бідлих которой парадлельны сох бідлих міста при відлих міста парадлельня парадлель	(1) гас.ляжение. изделявая динив 1 = 30-00 мм, и 8 соответствире 1 энечино, уталоновым, и 8 соответствире 1 энечино, уталоновым $N_{\rm col}$ для оцения $N_{\rm col}$ (1) Расстяжение изсодный объем V_0 = 0,01 м 3 . Объемом верхней части под напримением (в m^3), кам установлено в Тип Е 1 1995-1 1, рисучов 6.9, являяется V (см. рисучов 6.7). (Примесание: зачение V не должно превышать $2V_{\rm J}/3$, $T_{\rm col}/V_{\rm g}$ — объем балии).	(1) Прочность при растяжении				

	ца З Распространенные коэффициенты преобразования, устан вающие влияние на расчетные значения	ювленные в ТКП EN 1995	5-1-1,
Обозначение	Функция коэффициента	Подверженное влиянию	Соответству-
оэффициента	1	свойство или	ющий(ие) раздел(ы)
оэффициента		коэффициент	B TKΠ EN 1995-1-1
		напряжения	
C _m	Учитывает перераспределения напряжений, когда сечение		6.1.6(2)
m	подвержено изгибу вокруг оси у-у и оси z-z и подвержено	σ_{md}	
	напряжению за пределами предела упругости. Также учитывает	$\frac{\sigma_{m,d}}{f_{m,d}}$	
	изменение прочности материала сечения элемента.	J m,d	
S _{vol}	Корректирует расчетную прочность при растяжении, поперек	f _{r 90 d}	3.3(5), 3.4(7),
· ·vol	волокон клееной древесины и бруса на основе клееного шпона,	4-44	6.4.3(6), 6.4.3(7)
	когда объем под напряжением в верхней части двускатной балки,		
	криволинейной балки или балки с начальным выгибом превышает		
	исходный объем, установленный в ТКП EN 1995-1-1.		
dis	Корректирует расчетную прочность при растяжении, поперек	f _{t,90,d}	6.4.3(6), 6.4.3(7)
uis	волокон клееной древесины и бруса на основе клееного шпона в		
	верхней части двускатной балки, криволинейной балки или балки с		
	начальным выгибом		
crit	Учитывает влияние бокового выпучивания при кручении, уменьшая	f _{m,y,d}	6.3.3(3)
Cit.	расчетную прочность элемента при изгибе вокруг оси у–у, когда		
	относительный коэффициент гибкости при изгибе составляет >0,75.		
c _{cv} ,k _{cz}	Учитывает влияние осевой неустойчивости, уменьшая расчетную	f _{c,0,d}	6.3.2
-,	прочность элемента при осевом сжатии, когда относительный		
	коэффициент гибкости вокруг оси у-у (для k _{су}) и/или оси z-z (для k _{сz})		
	составляет > 0,3.	.	
C _{c,90}	Увеличивает прочность конструкций из древесины или древесных	f _{c,90,d}	6.1.5
	материалов при сжатии поперек волокон		
	Учитывает влияние подрезки на прочность элемента при сдвиге.	f _{v,d}	6.5.2
C _{svs}	Увеличивает свойства прочности элемента, когда несколько	Все свойства прочности	6.6
'sys	аналогичных элементов, узлов или компонентов равномерно	элемента в системах	
	распределены и связаны с помощью системы непрерывного	перераспределения	
	распределения нагрузки, способной передавать нагрузку между	нагрузки	
	соседними элементами.	1	