УДК 546.3 : 574+556+564 (476 – 2 Γ) + 543.3

Макаренко Т.В., Шамрова Я.С.

Гомельский Государственный Университет им. Ф. Скорины

ЗАГРЯЗНЕНИЕ ТЯЖЕЛЫМИ МЕТАЛЛАМИ КОМПОНЕНТОВ ВОДНЫХ ЭКОСИСТЕМ Г. ГОМЕЛЯ

Результаты исследований показали следующие тенденции изменения содержания изучаемых тяжелых металлов в тканях моллюсков: однонаправленное снижение концентраций ионов марганца в 1,5-1,8 раза; для меди, кобальта и хрома увеличение их содержания в 1,5-3 раза.

Тяжелые металлы относятся к числу распространенных и весьма токсичных загрязняющих веществ. В то же время они, как микроэлементы являются неотъемлемой частью живого организма. Отличительная особенность тяжелых металлов как загрязнителей — устойчивость и увеличение их концентрации при переходе по трофическим цепям.

Цель работы — изучить многолетнюю динамику содержания тяжелых металлов в мягких тканях двустворчатых моллюсков и донных отложений водоемов г. Гомеля и прилегающих территорий для оценки изменения антропогенной нагрузки на водные экосистемы.

Для исследований были выбраны виды моллюсков, широко распространенные в водоемах Беларуси: перловица обыкновенная (Unio Pictorum L.) и беззубка обыкновенная (Anodonta cygnea L.). Исследования проводились на протяжении 2002-2014 гг. на водоемах г. Гомеля с различной степенью антропогенной нагрузки и гидрологическим режимом. Определение содержания тяжелых металлов проходило на базе РНИУП «Институт Радиологии» в лаборатории массовых анализов, а также на базе Института геохимии и геофизики НАН Беларуси методом атомно-эмиссионной спектрометрии.

Согласно проведенным исследованиям, результаты которых приведены в таблицах 1, 2, тенденция изменения содержания изучаемых металлов в тканях моллюсков

неоднозначна: для ионов марганца наблюдается однонаправленное снижение концентраций, и минимальная величина приходится для обоих изучаемых видов на 2014 г. Однако, для меди, кобальта и хрома (последний металл только для перловицы) прослеживается увеличение их содержания, и на период 2014 г. отмечается наибольшее значение концентраций соединений данных металлов в тканях изучаемых гидробионтов.

Таблица 1 Содержания тяжелых металлов в мягких тканях перловицы

	Определяемый показатель, мг/кг					
Изучаемый год	Mn	Cu	Zn	Pb	Со	Cr
2002 г.	2520,0	11,5	200,2	1,8	0,8	0,9
2007 г.	1890,0	12,3	230,3	1,8	0,7	2,3
2009 г.	1840,0	13,4	200,1	1,3	0,7	2,3
2011 г.	1610,5	13,8	190,4	1,4	0,8	2,6
2014 г.	1520,0	15,5	200,5	1,5	1,1	2,9

Таблица 2 Содержания тяжелых металлов в мягких тканях беззубки

	Определяемый показатель, мг/кг					
Изучаемый год	Mn	Cu	Zn	Pb	Со	Cr
2002 г.	2341,0	9,6	149,4	1,7	0,6	1,3
2007 г.	1960,6	10,6	150,1	1,0	0,8	1,2
2009 г.	1902,0	11,2	150,4	1,1	0,7	1,1
2011 г.	1510,5	12,4	148,5	1,5	0,9	1,2
2014 г.	1220,9	14,1	146,3	1,8	1,4	1,3

Для цинка и свинца варьирования содержания в мягких тканях моллюсков незначительны за весь период долговременных наблюдений. Однако, в ходе анализа состава воды отмечено увеличения концентраций вышеназванных металлов практически в 2 раза с момента начала исследований. Возможно, соединения цинка и свинца находятся в компонентах водоемов в малодоступных для живых организмов формах.

Проанализировав полученные результаты, установлено, что механизмы и пути поступления тяжелых металлов в ткани моллюсков различаются, и как пример можно привести содержание хрома в мягких тканях гидробионтов. Так, характерны следующие закономерности: перловицы концентрация ионов данного металла возросла за период 2002-2014 гг. в 2,8-3,0 раза, и максимальное значение приходится на 2014 г.; однако, в тканях беззубки содержание ионов хрома за этот же период исследований колеблется в узких пределах (наименьшее значение отмечено в 2009 г., в дальнейший период наблюдалось незначительное увеличение). Годовая динамика наблюдений за изменением концентрации изучаемых металлов показала, что одним из главных загрязнителей мягких тканей беззубки были ионы кобальта: концентрация ионов возросла в 1,4-2,5 раза; но в тканях перловицы рост значений содержания металла незначительный (увеличилось в среднем 1,5 раза). Полученные говорят индивидуальных результаты об особенностях накопления тяжелых металлов разных видов моллюсков, что можно объяснить работой механизмов блокировки и аккумулирования тяжелых металлов, характерных для всех гидробионтов. Следует отметить, что максимальные концентрации ионов железа в мягких тканях перловицы и беззубки отмечена у особей, отобранных в 2002 году.

Наиболее полная оценка загрязненности городских водоемов тяжелыми металлами требует комплексного анализа их содержания в различных биотических и абиотических компонентах водных объектов. Особое значение при этом имеет изучение процессов миграции элементов - поллютантов в пределах водоема, а также взаимосвязи и взаимозависимости их содержания в донных отложениях, воде, растительности и животных организмах. Для наиболее обобщенной оценки содержания тяжелых металлов в водоемах мы использовали данные о химическом составе донных отложений.

Как показали проведенные исследования по оценке содержания тяжелых металлов в донных отложениях водоемов г. Гомеля, максимальное содержание практически всех изучаемых ионов (исключение медь) отмечено в донных отложениях, отобранных в 2007 году (таблица 3). Низкий уровень концентраций ионов марганца и свинца определены в

2011 году, меди, цинка и кобальта в 2002, хрома в 2014. Полученные данные могут отображать миграцию тяжелых металлов и их соединений, т.е. способность перемещаться и перераспределяться в биотических и абиотических компонентах.

. Таблица 3 Содержание тяжелых металлов в донных отложениях мг / кг

	Определяемый показатель, мг/кг					
Изучаемый	Mn	Cu	7n	Pb	Co	Cr
год	10111	Ou	211	1.0	00	Oi
2002 г.	990,00	7,92	10,22	9,70	1,11	11,64
2007 г.	1530,00	16,47	186,60	12,60	6,07	17,34
2009 г.	1430,50	16,99	73,20	10.30	1,50	15,48
2011 г.	1217,00	17,60	52,16	6,08	1,00	12,38
2014 г.	936,60	23,40	94,00	7,40	1,90	11,20

Мониторинговые исследования показали. что наблюдается однозначной тенденции снижения содержания ионов тяжелых металлов как для тканей моллюсков, так и для донных отложений. Так, для марганца характерна тенденция увеличения концентраций в 1,2-1,5 раза в 2007-2011 гг., а затем незначительное снижение. Похожая тенденция наблюдалась также и лля ионов свинца и хрома. Проанализировав полученные результаты, отмечено, что только для меди характерна тенденция однонаправленного увеличения содержания ионов в абиотическом компоненте водоемов в 2,5-3,0 раза, и максимальный уровень концентрации приходится на 2014 год.

Низкие значения содержания кобальта определены в донных отложениях, отобранных в 2002 году, тогда как в 2007 наблюдается резкое увеличение концентраций данного металла в среднем 5,5 раз. Такой резкий рост содержания кобальта, возможно, связан с вторичными процессами, происходящими в водоеме, однако, не исключен и факт внешнего загрязнения.

За период долговременных наблюдений, были отмечены следующие тенденции изменения содержания изучаемых тяжелых металлов в тканях моллюсков: однонаправленное снижение концентраций ионов марганца в 1,5-1,8 раза, однако,

для меди, кобальта и хрома (последний металл только для перловицы) прослеживается увеличение их содержания в 1,1-2,9-3,1 1,4 раза раза соответственно. Возможно, закономерность уменьшения концентраций ионов марганца в тканях двустворчатых моллюсков связана как со снижением содержания ионов данного элемента В промышленных выбросах, так и с изменением наличия доступных форм металлов для аккумулирования гидробионтами в абиотических компонентах водоема.

Оценить изменения антропогенной нагрузки водоемов г. Гомеля по содержанию тяжелых металлов в мягких тканях моллюсков донных И осалках сложно. так как не прослеживается однозначной тенденции варьирования концентраций изучаемых ионов металлов. Для наиболее полной обстановки экологической водоемов использовать и другие биотические и абиотические компоненты водных систем (растения, вода, брюхоногие моллюски).

Библиографический список

- 1. Бематерных, Д. М. Моллюски прудовик обыкновенный и прудовик яйцевидный как аккумулятивные индикаторы загрязнения пресных вод тяжелыми металлами (на примере р. Барнаулки). Проблемы биохимии и геохимической экологии, 2008. 117 с.
- 2. Лукашев, Д. В. Индикаторное значение пресноводных моллюсков при выявлении источника загрязнения речной экосистемы тяжелыми металлами. Донецк: ДонНУ, 2009—114 с.
- 3. Макаренко, Т.В. Анализ факторов, влияющих на уровень накопления микроэлементов в донных отложениях водоемов г. Гомеля и окрестностей. Известия Гомельского государственного университета имени Ф. Скорины, 2003. 96 с.