НАУЧНО-МЕТОДИЧЕСКИЙ СЕМИНАР

ПОВЫШЕНИЕ КАЧЕСТВА ПОДГОТОВКИ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ «ПРОМЫ ШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

(г. Минск, БНТУ — 24.05.2011)

УДК 681.3

СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАСЧЕТА СТАТИЧЕСКИ ОПРЕДЕЛИМОЙ РАМЫ НА ЯЗЫКАХ ПРОГРАММИРОВАНИЯ VISUAL BASIC FOR APPLICATION И FORTRAN POWER STATION

ДЕЛЕНДИК С.Н., КОЛЕДА С.М., КОРШУН Е.Л. Белорусский национальный технический университет Минск, Беларусь

Часто при работе с приложениями MS Office возникает необходимость автоматизировать выполнение той или иной последовательности действий, дополнить интерфейс приложения новыми окнами диалога, панелями инструментов и, таким образом, расширить возможности работы с документами. Для этого разработчики MS Office предоставили в распоряжение инструмент с большими возможностями, который достаточно прост в освоении.

Visual Basic for Application (VBA) — это визуальный объектноориентированный язык программирования, встроенный в приложения Office. VBA предназначен для создания макросов в приложениях MS Office, простые программные приложения, выполняющие вычисления [1].

Сейчас VBA является полноценной средой разработки, ограниченной лишь возможностью создания библиотек и исполняемых файлов, и входит не только в состав пакета Microsoft Office, но и в состав других, не менее популярных пакетов, например 1С.

СОЗДАНИЕ ПРОГРАММЫ НА ЯЗЫКЕ VBA ПО РАСЧЁТУ СТАТИЧЕСКИ ОПРЕДЕЛИМОЙ РАМЫ

Программа состоит из подпрограмм, которые запускаются не из головной программы, а при выполнении какого-либо условия, например при нажатии командной кнопки, запуске формы и т.д.

На примере одной из программ создаются следующие подпрограммы:

- -ввод данных из таблицы Excel и их проверка (при нажатии на первую командную кнопку) (рис.1);
- -перевод в систему СИ и вывод переведённых величин на лист Excel (при нажатии на вторую командную кнопку);
- -расчёт опорных реакций и вывод на лист Excel (при нажатии на третью командную кнопку).

Дальше открывается форма, на которой находятся три кнопки, каждая отвечает за следующие действия

- -расчёт моментов в сечениях (количество задаётся из выдвижных списков) (рис.2);
- -подбор размеров сечений (при этом параметры можно подбирать, не выходя из программы;
 - -построение эпюры моментов в AutoCad (рис. 3).

Таким образом, в VBA подпрограммы вызываются не из головной программы, а при происхождении какого-либо события (нажатие кнопки), в VBA упрощена работа с исходными данными и результатами, в VBA есть возможность построения чертежей в Auto-Cad.

				Исходнь	іе данные				
hl,m	10				(i) -(i)				
hг,м	12			† <u>"</u>	anana mamana (ililiki				
l,M	10			- 4	q(i)	mm^q	(i)		
F,ĸH	4								
d,M	4			F_{\bullet}		P($\overline{\nu}_{-}$		
д,кН/м	5			a .		P(lir.	
S,M	2						biolikasi Allikasi	<u> </u>	
а,м	1			σ			<u> </u>		
nq	4						79797		
пр	2								
q(i),ĸH/m	10	7	10	10					
z(i),m	3	3	2	3					
u(i),m	2	3	2	3					
P(i),ĸH	4	5							
t(i),m	7	8							
ьтіп,мм	50								
bmax,мм	300	Сделайте проверку Проверка							
∆b,mm	5								а
R,МПа	210								

				Опорн	ые реа	кции			
om F									
Ха,кН	-4.00								
Уа,кН	2.40								
<i>Чδ,кН</i>	-2.40								
om g									
Ха,кН	-10.00								
Уа,кН	4.00								
<i>Чδ,кН</i>	-4.00								
om q(i)									
Ха,кН	0.00	0.00	0	0					
Уа,кН	10.50	9.45	6	13.5	200000000000000000000000000000000000000		88 (2001)		
<i>Чδ,кН</i>	19.50	11.55	14	16.5					
om P(i)									
Ха,кН	-4.00	-5.00							
Уа,кН	2.80	4.00							
<i>Чδ,кН</i>	-2.80	-4.00							
	результир	оующие р	еакции						
Ха,кН	-23.00								
Уа,кН	52.65							P	
<i>Чδ,кН</i>	48.35							Вычис	лишь

Рис. 1 Формы для ввода исходных данных и вывода рассчитанных опорных реакций при расчете на VBA

Стержень 2	35	- 12	Рисование завершено									
Стержень 3	35 💌		Расчет			Подбор сечений			Эпюра М	×		
MF keim	0	0	0	0	0	0	0	0	0	ē.	0	
Mg KHM	0	0	0	0	0.078	0.554	1.4619	2.8029	4.5761	5.792	9.42	12 95.
Mg(1) kHa	0	0	0	a	0	- 0	0	g.	0		0	
Mg(2) kHm	0	0	0	0	0	0	0	0	0	0	0	
Mg(3),kHm	0	0	0	0	0	0	0	0	0	£	0	
Mgrul kma	0	0	0	0	0	0	0	0	0	0	0	
Mp(1) kHm	0	- 0	0	0	0		0	0	0	0	0	
Mpl2), kHm	0	0	0	0	0	0	0	0	0	Ø	0	
Мехни	0		0	0	0.078	0.554	1.4619	2.8028	4.5761	6 782	9.42	12 35
чомер сеченуя	1		3	4	5		7	9	9	10	11	1,

Рис. 2 Форма для вывода рассчитанных изгибающих моментов при расчете на VBA и вычерчивания результатов в AutoCad

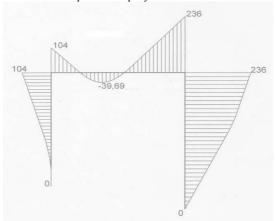


Рис. 3 Результирующая эпюра изгибающих моментов

COЗДАНИЕ ПРОГРАММЫ НА ЯЗЫКЕ FORTRAN POWER STATION ПО РАСЧЁТУ СТАТИЧЕСКИ ОПРЕДЕЛИМОЙ РАМЫ

Вся программа состоит из основной программы и подпрограмм, вызываемых в основной программе.

Используются следующие подпрограммы:

-ввод исходных данных call indat(), проверка исходных данных, вывод таблицы исходных данных на экран и в файл результата, и перевод данных в систему СИ;

- вычисление ординат эпюр моментов и расчёт опорных реакций call calc();
-подбор размеров сечения call Sech();
- вывод ординат эпюров моментов call Outres().

```
program forever
   !Програма для вычисления ординат эпюры изгибающх моментов
   !в стойке и ригеле рамы от действующей нагрузки.
   implicit none
   integer:: i,num,np,nq,nom
   real:: f,d,g,a,s,bmin,bmax,db,h,cl,cr,r,Mmax,b,r1,h1
   real,dimension(120)::p,t,q,u,z
   real,dimension(105)::mom
   real,dimension(105,22)::moment
   open(1,file='rezultat')
         !ввод исходных данных
   call indat(i,num,np,nq,f,d,g,a,s,bmin,bmax,db,h,cl,cr,r,p,t,q,u,z)
         !ординаты эпюр моментов
call calc(h,cl,cr,f,d,g,a,s,p,t,q,u,z,Np,Nq,moment,mom,Mmax,nom)
         !подбор размеров сечений
   call Sech(Mmax,bmin,bmax,db,R,b,h1,r1)
         !вывод ординат эпюров моментов
   call Outres(np,nq,cl,cr,h,nom,Moment,mom, Mmax,b,h1,R1)
   close(1)
   read*
   end program!forever
```

Важным отличием VBA от Fortran PS является его простота и наглядность в использовании. Это было достигнуто благодаря возможности создания форм с различными элементами управления, начиная от простых кнопок и заканчивая, например, элементами OLE, которые позволяют в формах вставлять AutoCad рисунки, документы Word, Excel и т.д. Всё это позволяет сделать программу наглядной [2].

VBA встроен:

1. Во все главные приложения MS Office — Word, Excel, Access, PowerPoint, Outlook, FrontPage, InfoPath;

- 2. В другие приложения Microsoft, например, Visio и Microsoft Project;
- 3. В более чем 100 приложений третьих фирм, например, CorelDraw и CorelWordPerfect Office 2000, AutoCad и т.п.

У VBA есть также множество других преимуществ:

- VBA универсальный язык. Освоив его, вы не только получите ключ ко всем возможностям приложений Office и других, перечисленных выше, но и будете готовы к тому, чтобы:
- создавать полноценные приложения на Visual Basic (поскольку эти языки — близкие родственники);
- использовать все возможности языка VBScript (это вообще урезанный VBA). В результате в вашем распоряжении будут универсальные средства для создания скриптов администрирования Windows (об этом в конце курса), для создания Web-страниц (VBScript в Internet Explorer), для создания Web-приложений ASP, для применения в пакетах DTS и заданиях на MS SQL Server, для создания серверных скриптов Exchange Server и многое-многое другое.

Fortran PS широко используется в первую очередь для научных и инженерных вычислений. Ориентация этого языка на инженерные и научные вычисления объясняет наличие большого количества встроенных математических функций и арифметических операций. Также предусмотрены операции отношения, булевы операции и простая выборка элементов массивов при помощи индексов [3].

Одно из преимуществ современного Фортрана — большое количество написанных на нём программ и библиотек подпрограмм. Среди учёных, например, ходит такая присказка, что любая математическая задача уже имеет решение на Фортране, и, действительно, можно найти среди тысяч фортрановских пакетов и пакет для перемножения матриц, и пакет для решения сложных интегральных уравнений и многие, многие другие. Ряд таких пакетов создавались на протяжении десятилетий и популярны по сей день (главным образом в научной среде).

вывод

Для создания программы по расчёту статически определимой системы для удобства пользования лучше использовать VBA, но в общем случае, если задача стоит в расчёте более сложной модели, требующей больших вычислений, рациональнее использовать Fortran PS, так как его производительность выше.

ЛИТЕРАТУРА.

- 1. Microsoft Office Excel 2003: учебный курс / В. Кузьмин. СПб.: Питер; Киев: Издательская группа ВНV, 2004. 493 с.
- 2. http://www.helloworld.ru/texts/comp/lang/vbasic/vb2/vb2.htm/
- 3 http://www.ciao.co.uk/Microsoft_Fortran_PowerStation_4_0