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1. Introduction 
In the design process of steel structure, the design of main structural members (beams, 

columns) must take into account the end connections of these members. As the actual behav-
iour of a member is dictated by the connection, the design of the connection must be made in 
accordance with assumptions made in the design. Therefore, the designer must consider the 
behaviour of connection in both analysis and design. 
In analysis and design of steel frames, connections are idealized as either rigid or pinned for 
simplicity and between these two extremities lies the actual behaviour of steel frame connec-
tions which is semi-rigid. It was reported in many publications [1, 2, 3]. 
In the Load and Resistance Factor Design Specification [4], two categories define the types of 
construction: 

 Type FR (fully-restrained), commonly designated as “rigid-frame” (continuous frame), 
assumes that beam-to-column connections have sufficient rigidity to hold the original 
angles between intersecting members virtually unchanged. 

 Type PR (partially-restrained) assumes that the connections of beams and girders pos-
sess a sufficient rigidity between the intersecting members. 
The behaviour of a frame connection subjected to moment is defined by relationship be-

tween moment and connection relative rotation (M-θ curve). The rigidity of the connections 
effects the distribution of negative and positive bending moments along the members, and ef-
fects the rotational deformation of the structural elements. 

The most practical method to model connection behaviour is to curve fit experimen-
tally-measured moment-rotation data for a given connection to an analytical function. As il-
lustrated in Fig. 1, there are many models to predict the rotation and stiffness of the connec-
tions.  

 
Fig. 1. Curve Fitting Models [5] 
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Linear model were developed by Lightfoot [6], the stiffness of connection is assumed to 
be constant throughout its loading range. This model does not represent how the connection 
stiffness is gradually degraded as load increases. Thus, it does not represent the connection 
behavior adequately as it approaches its ultimate limit state. 

A better representation of the connection behaviour is the bi-linear model developed by 
Tarpy and Cardinal [7]. The model has a shallower second slope at a particular transition 
moment Mt to represent the reduced connection stiffness at higher rotations. This model is not 
suitable for connection types that have non-linear moment-rotation behavior throughout their 
entire range. To overcome the limitations of the previous models, the multi-linear model was 
proposed by Moncarz and Grestle [8]. In the multi-linear model, the nonlinear shape of the 
M-θ curve is approximated by a series of straight lines.  

Kishi and Chen [9] developed the following three-parameter power function, plotted in 
Fig. 1, to model moment-rotation data based on initial stiffness and ultimate moment capacity. 
The form of the power function is as follows: 

.

                                                  (1) 

Where Rki is the initial connection stiffness, Ø1 is the plastic rotation and n is shape factor. 
The plastic rotation is defined as a ratio of the ultimate moment capacity Mu and the ini-

tial connection stiffness Rki. The function has no final slope parameter. Therefore, it cannot be 
made asymptotic to a specific final slope [5]. 

While Ramberg-Osgood [10] developed their three parameter function to model stress-
strain data, the function has been used also to model moment-rotation curves. The form of the 
Ramberg-Osgood function is as follows:  
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Where Mo is a reference moment, and So is the slope parameter and n is a shape parameter. 
The function does a poor job of fitting curves as illustrated in Fig. 1 and the initial slope can-
not be explicitly specified since the shape parameter affects the initial slope of the curve. 
Moreover, the Ramberg-Osgood plots with negative curvature (concave down) can have only 
one point of maximum curvature. Thus, the function cannot accurately fit data that require 
multiple points of maximum curvature [5].  

Frye and Morris [11] represented the Polynomial Models and the form as follows: 
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Where K is parameter depending on the geometry of the connection and C is curve fitting 
constant to be determined by the method of least squares. 

The primary disadvantage of this model is that the first derivative of the function which 
indicates the connection stiffness may become negative at some values of M, which is physi-
cally impossible. 

The multi-parameter exponential models were proposed by Lui and Chen [12] to give 
good curve-fitting to test data. Some parameters are determined analytically, whilst others are 
obtained empirically by curve-fitting to experimental data. It has the form: 
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Where M0 is starting value of connection moment to which the curve is fitted, Rkf is 
strain hardening stiffness of the connection, α is scaling factor and Cj is curve fitting constant. 
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Del Savio et al. [13] developed a consistent and simple approach to determine moment-
rotation curves for any axial force level. Basically, this method works by finding moment-
rotation curves through interpolations executed between three required moment-rotation 
curves, one disregarding the axial force effect and two considering the compressive and ten-
sile axial force effects. 

The modified richard-abbott (MRA) function [14] gives better estimation to the connec-
tion rotation and stiffness among others as explained in Scerbo [5] but sometimes give stiff-
ness value higher than the experimental result which is unsafe.  

This study proposes adjustment to MRA function to give more accurate estimation to 
the connection stiffness by adding one more parameter Ø0 (the initial rotation of the connec-
tion) which has a major effect on the behavior, rotation and stiffness of connections. 

2. Characteristics of the MRA function 
The MRA function, presented in equation 5, define the relation between the moment 

and the relative rotation in term of the six parameters, S0, Sp, M0, Øu, n1 and n2 [14] 
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Where: M0 is a reference moment,  
So is the initial slope of the plot,  
Sp is the slope of a final asymptote line,  
n1 is a shape parameter, 
n2 additional shape parameter, 
and Øu is the ultimate rotational deformation.  
As shown in Fig. 2, the typical curve fitting plot using MRA function that has initial tangent 
slope S0, and final slope Sp, M0 is the moment at which the final slope line crosses the vertical 
axis. The final slope is defined by pSMM  0 [14]. 

 
 

Fig. 2. Typical curve fitting plot using MRA function [14] 
 

The MRA function, presented in equation 6, define the relation between the stiffness of 
connection and the relative rotation. 
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Using MRA equation to calculate the stiffness give sometimes higher estimation than 
the experimental result which is unsafe. So that we proposes adjustment to MRA equation to 
give better estimation to the stiffness of connections by adding one more parameter Ø0, the 
initial rotation of the connection, which has a major effect on the behaviour of connections. 

3. The Proposed Adjustment on MRA Function 
An extensive research has been performed by the authors to adjust the modified Rich-

ard-Abbott function using MATLAB software [15]. Computerized research using the curve 
fitting method guides us to add one more parameter Ø0 (the initial rotation of the connection, 
Fig. 3) which has a major effect on the behavior, rotation and stiffness of connections and has 
yielded the following formula: 
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Fig. 3. Ø0 the initial rotation of the connection 
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4. Verification of the Proposed Adjustment, Result and Discussion 
In order to verify the accuracy of the proposed function (equation 7) to estimate the 

connection stiffness, the following examples are selected from many examples solved by the 
authors to compare the proposed function and MRA function with the experimental results. 

Example 1:  
Typical Flush End Plate connection with following characteristics: M0 = 51 kN.m, So = 

9040 kN.m/rad, Sp = 205 kN.m/rad, n1 = 0.752, n2 = 1.518, Øu = 0.055 rad, Ø0 = 0.00028 rad. 
These values have been taken from Scerbo [5]. 

By taking different values of rotations from the experimental results [5] and calculating 
the connection stiffness utilizing the proposed equation (Eq. 7) provides the value of column 
3 in table 1 and employing MRA function (Eq. 6) produces the value tabulated in column 4 
table1. 
Table 1. Connection stiffness in example 1 

Rotation 
(radians) 

Stiffness of connection 
(kN.m/ rad) 

Experiment re-
sult  

Proposed equa-
tion (Eq. 7)  

MRA function (Eq. 
6)  

0.0003 8663 8347 8921 
0.0026 5898 5743 6183 
0.0097 1328 1152 1509 
0.0201 380 180 492 

 
Figure 4 shows the connection stiffness using proposed method, MRA and experimen-

tal results. 

 
Fig. 4. Stiffness-rotation of the connection in example 1 

By comparing the connection stiffness using proposed method, MRA function and ex-
perimental results, it can be noticed that the prediction of the proposed method give stiffness 
values equal or less than the experimental results while MRA function give higher estimation 
which is unsafe for design purposes. It can be concluded from table 1 that the prediction of 
the proposed method is more accurate than MRA function.  

Example 2: 
Typical Double Web Angle connection with following characteristics: M0 = 20 kN.m, 

So = 3880 kN.m/rad, Sp = 90 kN.m/rad, n1 = 1.093, n2 = 1.927, Øu = 0.079 rad, Ø0 = 0.0005 
rad. These values have been taken from Scerbo [5] 

By taking different values of rotations from the experimental results [5] and calculating 
the connection stiffness utilizing the proposed equation (Eq. 7) provides the value of column 
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3 in table 2 and employing MRA function (Eq. 6) produces the value tabulated in column 4 
table2. 
Table 2. Connection stiffness in example 2 

Rotation 
(radians) 

Stiffness of connection 
(kN.m/ rad) 

Experiment re-
sult  

Proposed 
equation (Eq. 

7)  

MRA function (Eq. 
6)  

0.0011 3600 3424 3654 
0.0046 1483 1504 1696 
0.0060 903 980 1165 
0.0083 593 486 661 

 
Figure 5 shows the connection stiffness using proposed method, MRA and experimental re-
sults. 

 
 

Fig. 5. Stiffness-rotation of the connection in example 2 
 

It can be noticed that the prediction of the proposed method give stiffness values equal or less 
than the experimental results which is safe, while MRA function give higher estimation than 
experimental result.  

Example 3: 
Typical Extended End Plate connection with following characteristics: M0 = 173 

kN.m, So = 130000 kN.m/rad, Sp = 2200 kN.m/rad, n1 = 0.267, n2 = 1.409, Øu = 0.022 rad, Ø0 
= 0.00001 rad. 

By taking different values of rotations from the experimental results [5] and calculat-
ing the connection stiffness utilizing the proposed equation (Eq. 7) provides the value of col-
umn 3 in table 3 and employing MRA function (Eq. 6) produces the value tabulated in col-
umn 4 in table 3. 
Table 3. Connection stiffness in example 3 

Rotation 
(radians) 

Stiffness of connection 
(kN.m/ rad) 

Experiment re-
sult  

Proposed equa-
tion (Eq. 7)  

MRA function 
(Eq. 6)  

0.0001 126270 114600 130000 
0.0003 105771 103478 108914 
0.0013 41692 41841 46312 
0.0035 10054 7664 11445 
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Figure 6 shows the connection stiffness using proposed method, MRA and experimental 
results. 

 
Fig. 6. Stiffness-rotation of the connection in example 3 

By comparing the connection stiffness using proposed method, MRA and experi-
mental results, it can be noticed that the prediction of the proposed method give stiffness val-
ues equal or less than the experimental results while MRA function give higher estimation 
which is unsafe. It can be concluded from table 3 that the prediction of the proposed method 
is more accurate than MRA function.  

Conclusion 
The design of real structures require the calculation of connection stiffness. A number 

of analytical functions have been proposed by the researchers to calculate the stiffness of con-
nections but most of them have disadvantages which are explained above. The proposed 
method (adjustment of MRA function) give a satisfactory approximation of stiffness. 

The accuracy of the adjusted equation has been proven by solving several examples. 
by comparing the result of the adjusted equation with MRA function , It can be noticed that 
the prediction of the proposed method give stiffness values equal or less than the experimental 
results while MRA give higher estimation which is unsafe.  

 
SUMMARY 

The behavior of steel frame may be significantly affected by the moment versus rota-
tional deformation behavior of its beam to column connections. One approach to the modeling 
of connection behavior has been to curve fit experimentally-measured moment-rotation data 
for a given connection to an analytical function. Various models were derived to predict the 
rotation and stiffness of the connections such as linear model, power models, Polynomial 
models, Ramberg-Osgood function, exponential model and Richard-Abbott function. The 
Richard-Abbott function gives better estimation to the connection rotation and stiffness 
among others. This study proposes an adjustment to the Richard-Abbott equation to give bet-
ter estimation to the stiffness of connections by adding one more parameter Ø0 (the initial ro-
tation of the connection) which has a major effect on behavior of connections. By comparing 
the result of the adjusted equation with Richard-Abbott function, it can be noticed that the ad-
justed equation give stiffness values equal or less than the experimental results which is safe, 
while the Richard Abbott equation gives sometimes a higher estimation for the connection 
stiffness than the experimental results which is unsafe. Since the adjusted equation is safe, it 
is believed to be suited for design purposes. 
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РЕЗЮМЕ 
В работе рассматривается один из подходов к расчетному обоснованию связующих 
элементов конструкций стальных рам. Метод заключается в аппроксимации экспери-
ментально-замеренных кривых о моменте, возникающем для конкретных случаев со-
единения ответственных элементов конструкций, в виде аналитической функции. Как 
показывает практика, функция Ричарда-Эбботта дает возможность улучшенной 
оценки расчета поворота соединений элементов конструкций и их жесткости по 
сравнению с другими подходами. В текущем исследовании предложен улучшенный ва-
риант уравнения Ричарда-Эбботта с целью более точной оценки параметра жестко-
сти различных типов соединений. Это достигается путем добавления параметра на-
чального вращения для каждого конкретного соединения. Показано, что параметр на-
чального вращения обладает важным влиянием на последующее поведение соединений 
и конструктивных элементов. Сравнение результатов показало, что модифицирован-
ное уравнение дает улушенные значения для жесткости, в то время как классическое 
уравнение Ричарда-Эбботта дает завышенные результаты. Скорректированное 
уравнение пригодно для практических целей проектирования элементов конструкций. 
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