МОДЕЛИРОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ ОТВОДА МАГИСТРАЛЬНОГО ТРУБОПРОВОДА

к.т.н. Гончаров М.В., к.ф.-м.н. Кончина Л.В., студ. Мирошин М.А.

Филиал ФГБОУ ВО «НИУ «МЭИ» в г. Смоленске, Россия

Вопрос обеспечения надежной и безопасной эксплуатации трубопроводов особенно актуален при транспортировке газа, нефти и нефтепродуктов. Для этого необходимо минимизировать продольные перемещения трубопроводов, в связи с чем предусматривают установку компенсаторов различных форм. При изменении направления трубопроводов применяют соединительные детали – отводы [1].

Рассмотрим отвод, находящийся под действием внутреннего равномерного давления q, в виде тороидальной оболочки радиуса s (Рисунок 1), используя геометрическую линейную постановку с уточненным расчетом геометрической нелинейности.

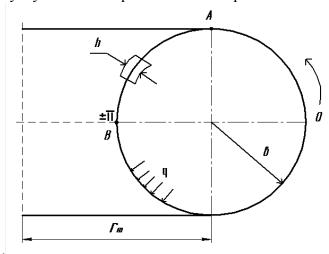


Рис. 1. Геометрические параметры тороидальной оболочки

Исходные данные: q – внутреннее давление, v - коэффициент Пуассона, толщина стенки отвода - h, допускаемое напряжение - $[\sigma]$, радиус кривизны отвода - r_m , радиус - g.

Изгибные и растягивающие напряжения по безмоментной теории определены в виде [2]:

$$\sigma_{\text{M1}}^{\text{A}} = \frac{q_{\text{B}}}{h} \cdot \frac{\lambda}{2} \sqrt{\frac{3}{1 - \nu^2}} \cdot \frac{0.939}{\mu^{\frac{1}{3}}}, \ \sigma_{\text{T1}}^{\text{A}} = \frac{q_{\text{B}}}{h} \ , \ \sigma_{\text{T2}}^{\text{A}} = \frac{q_{\text{B}}}{2h}$$

где
$$\lambda = \frac{B}{r_m}$$
, $\mu = \frac{B^2}{r_m h} \sqrt{12(1-v^2)}$.

Далее суммарные напряжения можно вычислить по формуле:

$$\sigma_{\Sigma}^{A} = \sigma_{M1}^{A} + \sigma_{T1}^{A}$$
.

По теории наибольших касательных напряжений для обеспечения прочности должно выполняться неравенство

$$(\sigma_{T1} - \sigma_{T2}) \leq [\sigma]$$

Проверка на прочность в точке В сечения заключается в выполнении неравенства

$$\left(\sigma_1^{\mathrm{B}}-\sigma_2^{\mathrm{B}}\right)\leq\left[\sigma\right],$$

где [2]
$$\sigma_1^B = \frac{q_B}{h} \cdot \frac{1 - 0.5\lambda}{1 - \lambda}, \quad \sigma_2^B \approx 0.33\sigma_1^B.$$

В ходе исследований проведен уточненный расчет с учетом геометрической нелинейности, определено изгибное напряжение [2]

$$\sigma_{\text{MIHEJI}} = \frac{\sigma_{\text{MIJIUH}}}{\left(1 + \frac{q_0}{\mu - 1}\right)},$$

где
$$q_0 = \frac{q_B^3}{\mathcal{I}}$$
, $\mathcal{I} = \frac{Eh^3}{12(1-v^2)}$.

В результате решения задачи с учетом следующих параметров отвода: q=2,5МПа, v=0,33,h=1см, $r_m=0,353,e=25$ см, $[\sigma]=160$ МПа, сделан следующий вывод: максимальные напряжения возникают на внутренней поверхности (по меньшему радиусу изгиба). Предложенные параметры отвода удовлетворяют условиям прочности с большим запасом n=2,83.

В данной работе предлагается проверить вышеупомянутые расчеты с помощью метода конечных элементов, который реализуется в программном обеспечении «T-FLEX CAD Анализ».

Т-FLEX Анализ – это интегрированная с T-FLEX CAD среда конечно-элементных расчётов. Используя T-FLEX Анализ, пользователь системы T-FLEX CAD имеет возможность осуществлять математическое моделирование распространённых физических явлений и решать важные практические задачи, возникающие в повседневной практике проектирования. Все расчёты ведутся с применением метода конечных элементов (МКЭ) [3]. Метод часто используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики. При этом между трёхмерной моделью изделия и расчётной конечно-элементной моделью поддерживается ассоциативная связь. Параметрические изменения исходной твердотельной модели автоматически переносятся на сеточную конечно-элементную модель [3].

Экспресс-анализ - бесплатный модуль, встроенный в T-FLEX CAD . Этот модуль является облегчённой версией пакета «T-FLEX Анализ», специально адаптированной для проведения упрощенных, но качественных прочностных расчетов. В распоряжении пользователя имеется необходимый набор типов нагрузок и закреплений. Основываясь на геометрии модели T-FLEX CAD, автоматический генератор экспресс-анализа создаёт качественную конечно-элементную сетку. После выполнения расчета в графическом виде выводятся результаты по деформациям, напряжениям, перемещениям, запасу прочности.

Рассмотрим отвод магистрального трубопровода со следующими параметрами, взятыми из ГОСТа 5525-88:

- материал СЧ15,
- 2) условный проход 500 мм.
- 3) масса 245 кг,
- 4) крепление к основному трубопроводу производится с помощью фланцев,
- 5) коэффициент Пуассона $\nu = 0.33$,
- 6) предельное допустимое напряжение на разрыв составляет 150 МПа.

Конечно-элементный анализ осуществляется в несколько этапов. Первым этапом является создание трехмерной модели изделия. Трехмерная модель отвода представлена на рисунке 2.

Рис. 2. 3D модель отвода магистрально трубопровода

Второй этап - создание задачи. Задачей является исследование напряженного состояния отвода под действием внутреннего давления, равного 2,5 МПа.

Третий этап – построение конечно—элементной сетки. Результат представлен на Рисунке 3.

Четвертый этап — наложение граничных условий. Граничными условиями являются фланцы с обеих сторон отвода (жесткая заделка).

Пятый этап – выполнение расчетов. Программа выполняет расчеты в автоматическом режиме.

Шестой этап — анализ результатов. Результаты анализа с помощью метода конечных элементов представлены на Рисунке 4 и Рисунке 5.

Коэффициент запаса *п* при предельно допустимом напряжении на разрыв 150 МПа равен 3,048, что удовлетворяет условиям прочности с большим запасом.

Рис. 3. Конечно-элементная сетка отвода магистрального трубопровода

Рис. 4. Анализ коэффициента запаса

Аналитическим методом был произведен расчет отвода магистрального трубопровода с теми же параметрами, используя безмоментную теорию и теорию наибольших касательных напряжения с учетом геометрической нелинейности. Коэффициент запаса n=2,83, что также удовлетворяет условиям прочности.

Рис. 5. Анализ максимальных напряжений

Рис. 6. Анализ максимальных напряжений разрез

Результаты, полученные двумя разными методами, отличаются менее чем на 10%, из этого следует вывод о том, что расчеты, приведенные в данной работе, верны.

Анализ максимальных напряжений в программном обеспечении «T-FLEX Анализ» показал, что наибольшие напряжения сконцентрированы на внутренней поверхности по меньшему радиусу изгиба, что так же подтверждают расчеты, выполненные по безмоментной теории и теории наибольших касательных напряжений.

Таким образом, модуль экспресс-анализа программного обеспечения «T-FLEX Анализ» позволяет проектировщику быстро определить расположение концентраторов напряжений, степень деформации, оценить элементы конструкции с избыточным материалом, а так же проверить расчеты, выполненные аналитическими методами.

РЕЗЮМЕ

Проведена проверка прочности по теории наибольших касательных напряжений в геометрически линейной постановке, а так же произведен расчет с учетом геометрической нелинейности, торовой оболочки с большим запасом прочности. Выполнен анализ напряженного состояния отвода, находящегося под действием внутреннего постоянного давления, методом конечных элементов, проведен сравнительный анализ с имеющимися результатами.

ЛИТЕРАТУРА

- 1. Летов, Л.А. Определение напряжений в отводах магистральных трубопроводов / Л.А. Летов, Л.В. Кончина, М.А. Мирошин // Сборник трудов VI Международной научно-технической конференции «Энергетика, информатика, инновации 2014», Смоленск, 2014, С. 209-211.
- 2. Мирошин, М.А. Определение нагрузок отвода магистрального трубопровода / М.А. Мирошин, Л.В. Кончина // Сборник трудов XI-ой международной научно-технической конференции студентов и аспирантов «Информационные технологии, энергетика и экономика».
- 3. Справка T-Flex Анализ.

SUMMARY

The strength has been tested using the theory of the greatest shear stresses in geometrically nonlinear statement, calculations has been made with the geometric nonlinearity of the torus shell with a large margin of safety taken into account. Tensity analysis has been carried out over the bend under the action of the constant internal pressure using a finite element method. A comparative analysis with the existing results has been made.

E-mail: <u>la kon@mail.ru</u> Поступила в редакцию 17.10.2015