НАУЧНО-МЕТОДИЧЕСКИЙ СЕМИНАР

ПОВЫШЕНИЕ КАЧЕСТВА ПОДГОТОВКИ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

(г. Минск, БНТУ — 24.05.2011)

УДК 624.012

НАТУРНЫЕ ИССЛЕДОВАНИЯ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ КАК МЕХАНИЗМ ПОВЫШЕНИЯ КАЧЕСТВА ПОДГОТОВКИ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ «ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

МИНЧЕНЯ Т.П., БАРАНЧИК В.Г., БАЕШКО С.И., БАРАНЧИК А.В., РУДЕНКОВ А.В. Белорусский национальный технический университет Минск, Беларусь

ВВЕДЕНИЕ

Натурные исследования строительных конструкций предполагают использование целого ряда технических нормативно правовых актов, норм и стандартов Европейского Союза, участие студентов в проведении натурных исследований позволяет получить практический опыт применения стандартов.

РЕЗУЛЬТАТЫ НАТУРНОГО ИССЛЕДОВАНИЯ

Рассмотрим натурные исследования строительных конструкций лестничной клетки общественного здания с целью определения несущей способности и эксплуатационной пригодности строительных конструкций главной лестницы. Проектная документация на исследуемое здание сохранилась частично. Проект здания разработан ГПИ «МИНСКПРОЕКТ» в 1965 г. Исполнительская документация

на здание отсутствует. Для определения несущей способности и эксплуатационной пригодности строительных конструкций были выполнен визуальный осмотр исследуемых конструкций; обмерные работы, исследования методами неразрушающего контроля прочности бетона, необходимые вскрытия конструкций, анализ результатов натурного исследования и поверочных расчётов, сделаны выводы о состоянии и несущей способности конструкций здания; разработаны рекомендации по дальнейшей эксплуатации исследованных конструкций здания.

Исследуемые строительные конструкции лестничной клетки расположены в каркасном здании. Здание выполнено в полном железобетонном каркасе по рамно-связевой схеме с самонесущими стенами. Каркас здания выполнен в конструкциях серии для много-этажных промышленных зданий ИИ-60.

Основными несущими конструкциями здания являются: столбчатые фундаменты под колонны; сборные железобетонные колонны; сборные железобетонные ригели и балки; сборные железобетонные плиты перекрытий. Сетка колонн здания 6х6 м. Сопряжение ригелей с колоннами жёсткое и обеспечивает восприятие рамных моментов. Плиты перекрытия запроектированы по неразрезной схеме.

Главная лестница в здании железобетонная по металлическим косоурам, трехмаршевая (с двумя промежуточными площадками) с широким просветом. Косоуры лестницы выполнены из стальных прокатных профилей двутаврового сечения № 20. Косоуры опираются на стены здания и лобовые балки. Лобовые балки выполнены из прокатных стальных двутавров №20.

Сборные железобетонные ступени имеют длину 1850 мм, высоту – 80 мм. Верхняя поверхность ступеней шлифованная мозаичная. Вскрытиями защитного слоя бетона рабочей арматуры установлено, что ступени в верхней и нижней зонах армированы сварными сетками с рабочей арматурой 5Ø4B-I (S500). Поперечная арматура Ø4B-I (S500) с шагом 150 мм. Прочность бетона ступеней, определённая в соответствии с ГОСТ 22690-88 составила не менее 22,1 МПа. Перила и поручни закреплены на стальных стойках, имеющих сечение 20х20 мм. Стойки закреплены при помощи гаек и увеличенных квадратных шайб к ступеням. В ступенях лестницы с отметки +0,000 до отметки -4,030 обнаружены трещины шириной

раскрытия до 0,8 мм, в некоторых ступенях обнаружены сколы бетона с оголением рабочей арматуры, повышенная зыбкость лестницы; стойки лестницы не зафиксированы к ступеням, не затянуты гайки крепления либо отсутствуют вовсе.

Поверочные расчёты исследуемых строительных конструкций главной лестницы здания выполнены в соответствии с требованиями действующих норм на фактические характеристики материалов с сохранением конструктивной схемы здания. Выполненный расчёт элементов главной лестницы здания показал:

- жёсткость косоуров, соединяющих промежуточные площадки недостаточна для восприятия действующих нагрузок.
- прочность элементов главной лестницы здания достаточна для восприятия действующих нагрузок.

Трещины в ступенях главной лестницы с отм. 0,000 до -4,030 вызваны нагрузками при транспортировке тяжёлого оборудования.

На основании анализа результатов натурного обследования и выполненных поверочных расчетов исследованных строительных конструкций главной лестницы здания можно сделать следующие выводы:

- 1. Косоуры лестницы находятся в неисправном (удовлетворительном) состоянии дефекты устраняются в процессе технического обслуживания и текущего ремонта. Необходимо выполнить увеличение сечения косоуров, для уменьшения зыбкости.
- 2. Ступени лестницы с отм.0,000 и выше находятся в ограниченно работоспособном (не вполне удовлетворительном) состоянии опасность обрушения отсутствует. Требуется ремонт с восстановлением сколов бетона.
- 3. Ступени лестницы с отм. 0,000 до -3,600 находятся в неработоспособном (неудовлетворительном) состоянии. Требуется выполнить усиление ступеней или заменить ступени.
- 4. Стойки перил лестницы находятся в ограниченно работоспособном (не вполне удовлетворительном) состоянии опасность обрушения отсутствует. Требуется ремонт (затянуть резьбовые соединения, установить недостающие гайки и шайбы).
- 5. Перила лестницы находятся в исправном (хорошем) состоянии малозначительные дефекты устраняются в процессе технического обслуживания.

ЗАКЛЮЧЕНИЕ

Для определения несущей способности и эксплуатационной пригодности строительных конструкций был выполнен визуальный осмотр исследуемых конструкций; обмерные работы, исследования методами неразрушающего контроля прочности бетона, необходимые вскрытия конструкций, выполнен анализ результатов натурного исследования и поверочных расчётов, сделаны выводы о состоянии и несущей способности конструкций здания; разработаны рекомендации по дальнейшей эксплуатации исследованных конструкций здания. При этом использовано несколько комплексов нормативно правовых актов. Первый комплекс ТНПА по правилам исследования и оценки технического состояния строительных конструкций, основные из которых ТКП 45-1.04-37-2008 [1], ТКП 45-1.04-119-2009 [2], ТКП 45-1.04-126-2009 [3]ТКП 45-1.04-206-2010 [4] ТКП 45-1.04-208-2010 [5] ТКП 45-5.04-49-2007 [6]. Второй комплекс ТНПА для определения фактических характеристик материалов конструкций неразрушающими методами и путем проведения испытаний отобранных образцов [7-10]. Третий комплекс ТНПА для выполнения расчетов конструкций [11-18]. Кроме того, в ходе выполнения исследований изучались, и велась подготовка к использованию системы европейских технических нормативно правовых актов. Блок ТКП EN 1991-1-2-2009 и национальное приложение Еврокод 1. Воздействия на конструкции. Части 1-2, 1-3, 1-4, 1-5, 1-6, 1-7. ТКП EN 1992-1-1-2009 и национальное приложение Еврокод 2. Проектирование железобетонных конструкций. Часть 1-1. Общие правила и правила для зданий. ТКП EN 1993-1-1-2009 и национальное приложение Еврокод 3. Проектирование стальных конструкций. Часть 1-1. Общие правила и правила для зданий. ТКП EN 1996-2-2009 и национальное приложение Еврокод 6. Проектирование каменных конструкций. Часть 3. Упрощенные методы расчета неармированных каменных конструкций.

ЛИТЕРАТУРА

- 1. Обследование строительных конструкций зданий и сооружений. Порядок проведения: ТКП 45-1.04-37-2008. Введ. 12.11.2008 Минск: Минстройархитектуры Республики Беларусь, 2009. 39 с.
- 2. Здания и сооружения. Оценка степени физического износа: ТКП 45-1.04-119-2009. Введ. 29.10.2008 Минск: Минстройархитектуры Республики Беларусь, 2009. 43с.
- 3. Обследование зданий и сооружений. Правила безопасности труда: ТКП 45-1.04-126-2009. Введ. 22.04.2009. Минск: Минстройархитектуры Республики Беларусь, 2009. 21 с.
- 4. Ремонт, реконструкция и реставрация жилых и общественных зданий и сооружений: ТКП 45-1.04-206-2010. Введ. 15.07.2010. Минск: Минстройархитектуры Республики Беларусь, 2011. 19 с.
- 5. Здания и сооружения. Техническое состояние и обслуживание строительных конструкций и инженерных систем и оценка их пригодности к эксплуатации. Основные требования: ТКП 45-1.04-208-2010. Введ. 15.07.2010 Минск: Минстройархитектуры Республики Беларусь, 2011. 23 с.
- 6. Конструкции стальные. Обследования и диагностика технического состояния: ТКП 45-5.04-49-2007. Введ. 07.12.2007 Минск: Минстройархитектуры Республики Беларусь, 2008. 125 с.
- 7. Нагрузки и воздействия: СНиП 2.01.07-85. Введ. 01.01.87. М.: ЦИТП Госстроя СССР, 1986. 36с.
- 8. Нагрузки и воздействия (Дополнения. Разд. 10. Прогибы и перемещения):СНиП 2.01.07-85. Введ. 01.01.89. М.: ЦИТП Госстроя СССР, 1988. 7 с.
- 9. Нагрузки и воздействия Изменение №1: СНиП 2.01.07-85. Введ. 18.06.2004 Минск: Минстройархитектуры Республики Беларусь, 2004. 6 с.
- 10. Стальные конструкции нормы и правила: СНиП II-23-81*. Введ. 01.01.82. М.: ЦИТП Госстроя СССР, 1990. 94 с.
- 11. Каменные и армокаменные конструкции: СНиП II-22-81. Введ. 01.01.83. М.: Стройиздат, 1983. 39 с.

- 12. Бетонные и железобетонные конструкции: СНБ 5.03.01-02. Введ. 20.06.2002 Минск: Минстройархитектуры Республики Беларусь, 2003. 139 с.
- 13. Кирпич и камни силикатные. Технические условия: СТБ 1228-2000. Введ. 05.06.2000 Минск: Минстройархитектуры Республики Беларусь, 2004. 14c.
- 14. Материалы стеновые. Методы определения прочности при сжатии и изгибе: ГОСТ 8462-85. Введ. 18.01.85. М.: Госстрой СССР, 1985. 8c.
- 15. Растворы строительные. Методы испытаний: ГОСТ 5802-86.М. – Введ. 11.12.85. – М.: Госстрой СССР, 1985. – 22 с.
- 16. Бетоны. Определение прочности механическими методами неразрушающего контроля: ГОСТ 22690-88 М. Введ. 01.01.91. М.: Государственный строительный комитет СССР, 1988. 25 с.